Suppr超能文献

多任务学习预测重症机械通气患者成功撤机:对MIMIC-IV数据库的回顾性分析

Multitask learning to predict successful weaning in critically ill ventilated patients: A retrospective analysis of the MIMIC-IV database.

作者信息

Lin Ming-Yen, Chi Hsin-You, Chao Wen-Cheng

机构信息

Department of Information Engineering and Computer Science, Feng Chia University, Taichung.

Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung.

出版信息

Digit Health. 2024 Oct 8;10:20552076241289732. doi: 10.1177/20552076241289732. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVE

Weaning is an essential issue in critical care. This study explores the efficacy of multitask learning models in predicting successful weaning in critically ill ventilated patients using the Medical Information Mart for Intensive Care (MIMIC) IV database.

METHODS

We employed a multitask learning framework with a shared bottom network to facilitate common knowledge extraction across all tasks. We used the Shapley additive explanations (SHAP) plot and partial dependence plot (PDP) for model explainability. Furthermore, we conducted an error analysis to assess the strength and limitation of the model. Area under receiver operating characteristic curve (AUROC), calibration plot and decision curve analysis were used to determine the performance of the model.

RESULTS

A total of 7758 critically ill patients were included in the analyses, and 78.5% of them were successfully weaned. Multitask learning combined with spontaneous breath trial achieved a higher performance to predict successful weaning compared with multitask learning combined with shock and mortality (area under receiver operating characteristic curve, AUROC, 0.820 ± 0.002 vs 0.817 ± 0.001,  < 0.001). We assessed the performance of the model using calibration and decision curve analyses and further interpreted the model through SHAP and PDP plots. The error analysis identified a relatively high error rate among those with low disease severities, including low mean airway pressure and high enteral feeding.

CONCLUSION

We demonstrated that multitask machine learning increased predictive accuracy for successful weaning through combining tasks with a high inter-task relationship. The model explainability and error analysis should enhance trust in the model.

摘要

目的

撤机是重症监护中的一个重要问题。本研究利用重症监护医学信息集市(MIMIC)IV数据库,探讨多任务学习模型在预测重症机械通气患者成功撤机方面的有效性。

方法

我们采用了一个具有共享底层网络的多任务学习框架,以促进所有任务间的共同知识提取。我们使用夏普利值附加解释(SHAP)图和偏效应图(PDP)来进行模型可解释性分析。此外,我们进行了误差分析,以评估模型的优势和局限性。采用受试者操作特征曲线下面积(AUROC)、校准图和决策曲线分析来确定模型的性能。

结果

分析共纳入7758例重症患者,其中78.5%成功撤机。与多任务学习结合休克和死亡率相比,多任务学习结合自主呼吸试验在预测成功撤机方面表现更优(受试者操作特征曲线下面积,AUROC,0.820±0.002对0.817±0.001,P<0.001)。我们使用校准和决策曲线分析评估了模型的性能,并通过SHAP和PDP图进一步解释了该模型。误差分析发现,在疾病严重程度较低的患者中,包括平均气道压力较低和肠内营养较高的患者,错误率相对较高。

结论

我们证明了多任务机器学习通过结合任务间关系较高的任务,提高了成功撤机的预测准确性。模型的可解释性和误差分析应增强对该模型的信任。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a7c/11459496/20108966f28f/10.1177_20552076241289732-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验