Department of Information Center, Lianyungang Human Resources and Social Security Bureau, Lianyungang, 222000, JiangSu, China.
Department of Information System, Lianyungang 149 Hospital, Lianyungang, 222000, Jiangsu, China.
BMC Cancer. 2023 Nov 22;23(1):1134. doi: 10.1186/s12885-023-11638-z.
This study aimed to comprehensively evaluate the accuracy and effect of computed tomography (CT) and magnetic resonance imaging (MRI) based on artificial intelligence (AI) algorithms for predicting lymph node metastasis in breast cancer patients.
We systematically searched the PubMed, Embase and Cochrane Library databases for literature from inception to June 2023 using keywords that included 'artificial intelligence', 'CT,' 'MRI', 'breast cancer' and 'lymph nodes'. Studies that met the inclusion criteria were screened and their data were extracted for analysis. The main outcome measures included sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and area under the curve (AUC).
A total of 16 studies were included in the final meta-analysis, covering 4,764 breast cancer patients. Among them, 11 studies used the manual algorithm MRI to calculate breast cancer risk, which had a sensitivity of 0.85 (95% confidence interval [CI] 0.79-0.90; p < 0.001; I = 75.3%), specificity of 0.81 (95% CI 0.66-0.83; p < 0.001; I = 0%), a positive likelihood ratio of 4.6 (95% CI 4.0-4.8), a negative likelihood ratio of 0.18 (95% CI 0.13-0.26) and a diagnostic odds ratio of 25 (95% CI 17-38). Five studies used manual algorithm CT to calculate breast cancer risk, which had a sensitivity of 0.88 (95% CI 0.79-0.94; p < 0.001; I = 87.0%), specificity of 0.80 (95% CI 0.69-0.88; p < 0.001; I = 91.8%), a positive likelihood ratio of 4.4 (95% CI 2.7-7.0), a negative likelihood ratio of 0.15 (95% CI 0.08-0.27) and a diagnostic odds ratio of 30 (95% CI 12-72). For MRI and CT, the AUC after study pooling was 0.85 (95% CI 0.82-0.88) and 0.91 (95% CI 0.88-0.93), respectively.
Computed tomography and MRI images based on an AI algorithm have good diagnostic accuracy in predicting lymph node metastasis in breast cancer patients and have the potential for clinical application.
本研究旨在全面评估基于人工智能(AI)算法的计算机断层扫描(CT)和磁共振成像(MRI)在预测乳腺癌患者淋巴结转移方面的准确性和效果。
我们系统地检索了 PubMed、Embase 和 Cochrane Library 数据库,从建库到 2023 年 6 月,使用了包括“人工智能”、“CT”、“MRI”、“乳腺癌”和“淋巴结”在内的关键词来搜索文献。筛选符合纳入标准的研究,并提取其数据进行分析。主要观察指标包括敏感性、特异性、阳性似然比、阴性似然比和曲线下面积(AUC)。
最终的荟萃分析共纳入了 16 项研究,涵盖了 4764 例乳腺癌患者。其中,11 项研究使用手动算法 MRI 计算乳腺癌风险,其敏感性为 0.85(95%置信区间[CI] 0.79-0.90;p<0.001;I=75.3%),特异性为 0.81(95% CI 0.66-0.83;p<0.001;I=0%),阳性似然比为 4.6(95% CI 4.0-4.8),阴性似然比为 0.18(95% CI 0.13-0.26),诊断比值比为 25(95% CI 17-38)。5 项研究使用手动算法 CT 计算乳腺癌风险,其敏感性为 0.88(95% CI 0.79-0.94;p<0.001;I=87.0%),特异性为 0.80(95% CI 0.69-0.88;p<0.001;I=91.8%),阳性似然比为 4.4(95% CI 2.7-7.0),阴性似然比为 0.15(95% CI 0.08-0.27),诊断比值比为 30(95% CI 12-72)。对于 MRI 和 CT,研究汇总后的 AUC 分别为 0.85(95% CI 0.82-0.88)和 0.91(95% CI 0.88-0.93)。
基于人工智能算法的 CT 和 MRI 图像在预测乳腺癌患者淋巴结转移方面具有良好的诊断准确性,具有临床应用潜力。