Suppr超能文献

基于人工智能算法的 CT 和 MRI 图像在预测乳腺癌患者淋巴结转移中的应用:一项荟萃分析。

Application of CT and MRI images based on an artificial intelligence algorithm for predicting lymph node metastasis in breast cancer patients: a meta-analysis.

机构信息

Department of Information Center, Lianyungang Human Resources and Social Security Bureau, Lianyungang, 222000, JiangSu, China.

Department of Information System, Lianyungang 149 Hospital, Lianyungang, 222000, Jiangsu, China.

出版信息

BMC Cancer. 2023 Nov 22;23(1):1134. doi: 10.1186/s12885-023-11638-z.

Abstract

BACKGROUND

This study aimed to comprehensively evaluate the accuracy and effect of computed tomography (CT) and magnetic resonance imaging (MRI) based on artificial intelligence (AI) algorithms for predicting lymph node metastasis in breast cancer patients.

METHODS

We systematically searched the PubMed, Embase and Cochrane Library databases for literature from inception to June 2023 using keywords that included 'artificial intelligence', 'CT,' 'MRI', 'breast cancer' and 'lymph nodes'. Studies that met the inclusion criteria were screened and their data were extracted for analysis. The main outcome measures included sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and area under the curve (AUC).

RESULTS

A total of 16 studies were included in the final meta-analysis, covering 4,764 breast cancer patients. Among them, 11 studies used the manual algorithm MRI to calculate breast cancer risk, which had a sensitivity of 0.85 (95% confidence interval [CI] 0.79-0.90; p < 0.001; I = 75.3%), specificity of 0.81 (95% CI 0.66-0.83; p < 0.001; I = 0%), a positive likelihood ratio of 4.6 (95% CI 4.0-4.8), a negative likelihood ratio of 0.18 (95% CI 0.13-0.26) and a diagnostic odds ratio of 25 (95% CI 17-38). Five studies used manual algorithm CT to calculate breast cancer risk, which had a sensitivity of 0.88 (95% CI 0.79-0.94; p < 0.001; I = 87.0%), specificity of 0.80 (95% CI 0.69-0.88; p < 0.001; I = 91.8%), a positive likelihood ratio of 4.4 (95% CI 2.7-7.0), a negative likelihood ratio of 0.15 (95% CI 0.08-0.27) and a diagnostic odds ratio of 30 (95% CI 12-72). For MRI and CT, the AUC after study pooling was 0.85 (95% CI 0.82-0.88) and 0.91 (95% CI 0.88-0.93), respectively.

CONCLUSION

Computed tomography and MRI images based on an AI algorithm have good diagnostic accuracy in predicting lymph node metastasis in breast cancer patients and have the potential for clinical application.

摘要

背景

本研究旨在全面评估基于人工智能(AI)算法的计算机断层扫描(CT)和磁共振成像(MRI)在预测乳腺癌患者淋巴结转移方面的准确性和效果。

方法

我们系统地检索了 PubMed、Embase 和 Cochrane Library 数据库,从建库到 2023 年 6 月,使用了包括“人工智能”、“CT”、“MRI”、“乳腺癌”和“淋巴结”在内的关键词来搜索文献。筛选符合纳入标准的研究,并提取其数据进行分析。主要观察指标包括敏感性、特异性、阳性似然比、阴性似然比和曲线下面积(AUC)。

结果

最终的荟萃分析共纳入了 16 项研究,涵盖了 4764 例乳腺癌患者。其中,11 项研究使用手动算法 MRI 计算乳腺癌风险,其敏感性为 0.85(95%置信区间[CI] 0.79-0.90;p<0.001;I=75.3%),特异性为 0.81(95% CI 0.66-0.83;p<0.001;I=0%),阳性似然比为 4.6(95% CI 4.0-4.8),阴性似然比为 0.18(95% CI 0.13-0.26),诊断比值比为 25(95% CI 17-38)。5 项研究使用手动算法 CT 计算乳腺癌风险,其敏感性为 0.88(95% CI 0.79-0.94;p<0.001;I=87.0%),特异性为 0.80(95% CI 0.69-0.88;p<0.001;I=91.8%),阳性似然比为 4.4(95% CI 2.7-7.0),阴性似然比为 0.15(95% CI 0.08-0.27),诊断比值比为 30(95% CI 12-72)。对于 MRI 和 CT,研究汇总后的 AUC 分别为 0.85(95% CI 0.82-0.88)和 0.91(95% CI 0.88-0.93)。

结论

基于人工智能算法的 CT 和 MRI 图像在预测乳腺癌患者淋巴结转移方面具有良好的诊断准确性,具有临床应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0c3/10666295/106b5479f221/12885_2023_11638_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验