Suppr超能文献

人工智能在肿瘤学中用于多模态数据整合。

Artificial intelligence for multimodal data integration in oncology.

机构信息

Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA.

Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.

出版信息

Cancer Cell. 2022 Oct 10;40(10):1095-1110. doi: 10.1016/j.ccell.2022.09.012.

Abstract

In oncology, the patient state is characterized by a whole spectrum of modalities, ranging from radiology, histology, and genomics to electronic health records. Current artificial intelligence (AI) models operate mainly in the realm of a single modality, neglecting the broader clinical context, which inevitably diminishes their potential. Integration of different data modalities provides opportunities to increase robustness and accuracy of diagnostic and prognostic models, bringing AI closer to clinical practice. AI models are also capable of discovering novel patterns within and across modalities suitable for explaining differences in patient outcomes or treatment resistance. The insights gleaned from such models can guide exploration studies and contribute to the discovery of novel biomarkers and therapeutic targets. To support these advances, here we present a synopsis of AI methods and strategies for multimodal data fusion and association discovery. We outline approaches for AI interpretability and directions for AI-driven exploration through multimodal data interconnections. We examine challenges in clinical adoption and discuss emerging solutions.

摘要

在肿瘤学中,患者状态的特点是涉及多种模式,包括放射学、组织学和基因组学以及电子健康记录。当前的人工智能 (AI) 模型主要在单一模式领域运作,忽略了更广泛的临床背景,这不可避免地限制了它们的潜力。不同数据模式的整合为提高诊断和预后模型的稳健性和准确性提供了机会,使 AI 更接近临床实践。AI 模型还能够发现适合解释患者结局或治疗耐药性差异的新模式,从而促进了新型生物标志物和治疗靶点的发现。为了支持这些进展,我们在这里总结了用于多模态数据融合和关联发现的 AI 方法和策略。我们概述了用于 AI 可解释性的方法以及通过多模态数据互联进行 AI 驱动探索的方向。我们研究了临床应用的挑战,并讨论了新兴的解决方案。

相似文献

1
Artificial intelligence for multimodal data integration in oncology.
Cancer Cell. 2022 Oct 10;40(10):1095-1110. doi: 10.1016/j.ccell.2022.09.012.
2
Deep Learning of radiology-genomics integration for computational oncology: A mini review.
Comput Struct Biotechnol J. 2024 Jun 20;23:2708-2716. doi: 10.1016/j.csbj.2024.06.019. eCollection 2024 Dec.
4
Artificial intelligence-based methods for fusion of electronic health records and imaging data.
Sci Rep. 2022 Oct 26;12(1):17981. doi: 10.1038/s41598-022-22514-4.
5
Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review.
Ann Oncol. 2024 Jan;35(1):29-65. doi: 10.1016/j.annonc.2023.10.125. Epub 2023 Oct 23.
7
Medical imaging and multimodal artificial intelligence models for streamlining and enhancing cancer care: opportunities and challenges.
Expert Rev Anticancer Ther. 2023 Jul-Dec;23(12):1265-1279. doi: 10.1080/14737140.2023.2286001. Epub 2023 Dec 8.
8
Artificial Intelligence in Clinical Oncology: From Data to Digital Pathology and Treatment.
Am Soc Clin Oncol Educ Book. 2023 May;43:e390084. doi: 10.1200/EDBK_390084.
9
Artificial Intelligence in Oncology: Current Capabilities, Future Opportunities, and Ethical Considerations.
Am Soc Clin Oncol Educ Book. 2022 Apr;42:1-10. doi: 10.1200/EDBK_350652.
10
Artificial Intelligence in Oncology: Current Landscape, Challenges, and Future Directions.
Cancer Discov. 2024 May 1;14(5):711-726. doi: 10.1158/2159-8290.CD-23-1199.

引用本文的文献

2
Multimodal integration strategies for clinical application in oncology.
Front Pharmacol. 2025 Aug 20;16:1609079. doi: 10.3389/fphar.2025.1609079. eCollection 2025.
6
HistoChat: Instruction-tuning multimodal vision language assistant for colorectal histopathology on limited data.
Patterns (N Y). 2025 May 30;6(8):101284. doi: 10.1016/j.patter.2025.101284. eCollection 2025 Aug 8.
10

本文引用的文献

1
Graph convolutional networks: a comprehensive review.
Comput Soc Netw. 2019;6(1):11. doi: 10.1186/s40649-019-0069-y. Epub 2019 Nov 10.
2
Transformers in medical imaging: A survey.
Med Image Anal. 2023 Aug;88:102802. doi: 10.1016/j.media.2023.102802. Epub 2023 Apr 5.
3
4
Pan-cancer integrative histology-genomic analysis via multimodal deep learning.
Cancer Cell. 2022 Aug 8;40(8):865-878.e6. doi: 10.1016/j.ccell.2022.07.004.
5
MRI-Based Radiomic Features Help Identify Lesions and Predict Histopathological Grade of Hepatocellular Carcinoma.
Diagnostics (Basel). 2022 Apr 26;12(5):1085. doi: 10.3390/diagnostics12051085.
6
Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis.
Nat Cancer. 2020 Aug;1(8):800-810. doi: 10.1038/s43018-020-0085-8. Epub 2020 Jul 27.
8
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge.
Nat Med. 2022 Jan;28(1):154-163. doi: 10.1038/s41591-021-01620-2. Epub 2022 Jan 13.
9
An explainable machine learning framework for lung cancer hospital length of stay prediction.
Sci Rep. 2022 Jan 12;12(1):607. doi: 10.1038/s41598-021-04608-7.
10
A survey on graph-based deep learning for computational histopathology.
Comput Med Imaging Graph. 2022 Jan;95:102027. doi: 10.1016/j.compmedimag.2021.102027. Epub 2021 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验