Suppr超能文献

利用功率谱的周期性成分增强基于脑电图的跨日心理负荷分类

Enhancing EEG-based cross-day mental workload classification using periodic component of power spectrum.

作者信息

Ke Yufeng, Wang Tao, He Feng, Liu Shuang, Ming Dong

机构信息

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China.

Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, People's Republic of China.

出版信息

J Neural Eng. 2023 Dec 12;20(6). doi: 10.1088/1741-2552/ad0f3d.

Abstract

. The day-to-day variability of electroencephalogram (EEG) poses a significant challenge to decode human brain activity in EEG-based passive brain-computer interfaces (pBCIs). Conventionally, a time-consuming calibration process is required to collect data from users on a new day to ensure the performance of the machine learning-based decoding model, which hinders the application of pBCIs to monitor mental workload (MWL) states in real-world settings.. This study investigated the day-to-day stability of the raw power spectral density (PSD) and their periodic and aperiodic components decomposed by the Fitting Oscillations and One-Over-F algorithm. In addition, we validated the feasibility of using periodic components to improve cross-day MWL classification performance.. Compared to the raw PSD (69.9% ± 18.5%) and the aperiodic component (69.4% ± 19.2%), the periodic component had better day-to-day stability and significantly higher cross-day classification accuracy (84.2% ± 11.0%).. These findings indicate that periodic components of EEG have the potential to be applied in decoding brain states for more robust pBCIs.

摘要

脑电图(EEG)的日常变异性对基于EEG的被动脑机接口(pBCI)中解码人类大脑活动构成了重大挑战。传统上,需要一个耗时的校准过程来在新的一天从用户那里收集数据,以确保基于机器学习的解码模型的性能,这阻碍了pBCI在现实环境中监测心理负荷(MWL)状态的应用。本研究调查了原始功率谱密度(PSD)及其通过拟合振荡和1/f算法分解的周期性和非周期性成分的日常稳定性。此外,我们验证了使用周期性成分来提高跨日MWL分类性能的可行性。与原始PSD(69.9%±18.5%)和非周期性成分(69.4%±19.2%)相比,周期性成分具有更好的日常稳定性和显著更高的跨日分类准确率(84.2%±11.0%)。这些发现表明,EEG的周期性成分有潜力应用于解码脑状态,以实现更稳健的pBCI。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验