ISAE-SUPAERO, Université de Toulouse, Toulouse, France.
DTIS, ONERA, F-13661 Salon Cedex Air, France.
Sci Data. 2023 Feb 10;10(1):85. doi: 10.1038/s41597-022-01898-y.
Brain-Computer Interfaces and especially passive Brain-Computer interfaces (pBCI), with their ability to estimate and monitor user mental states, are receiving increasing attention from both the fundamental research and the applied research and development communities. Testing new pipelines and benchmarking classifiers and feature extraction algorithms is central to further research within this domain. Unfortunately, data sharing in pBCI research is still scarce. The COG-BCI database encompasses the recordings of 29 participants over 3 separate sessions with 4 different tasks (MATB, N-Back, PVT, Flanker) designed to elicit different mental states, for a total of over 100 hours of open EEG data. This dataset was validated on a subjective, behavioral and physiological level, to ensure its usefulness to the pBCI community. Furthermore, a proof of concept is given with an example of mental workload estimation pipeline and results, to ensure that the data can be used for the design and evaluation of pBCI pipelines. This body of work presents a large effort to promote the use of pBCIs in an open science framework.
脑机接口,特别是被动脑机接口(pBCI),因其能够估计和监测用户的精神状态,正受到基础研究和应用研究与开发界越来越多的关注。在该领域内的进一步研究中,测试新的管道和基准分类器以及特征提取算法是核心内容。不幸的是,pBCI 研究中的数据共享仍然很少。COG-BCI 数据库包含了 29 名参与者在 3 次不同的会议中的记录,这些会议共包含 4 种不同的任务(MATB、N-Back、PVT、Flanker),旨在引出不同的精神状态,总共有超过 100 小时的公开 EEG 数据。该数据集在主观、行为和生理层面上进行了验证,以确保其对 pBCI 社区的有用性。此外,还提供了一个心理工作量估计管道和结果的概念验证示例,以确保数据可用于 pBCI 管道的设计和评估。这项工作旨在大力推动 pBCI 在开放科学框架中的应用。