School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia.
Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia.
Sci Rep. 2023 Nov 23;13(1):20613. doi: 10.1038/s41598-023-47456-3.
Crop plants and undomesticated resilient species employ different strategies to regulate their energy resources and growth. Most crop species are sensitive to stress and prioritise rapid growth to maximise yield or biomass production. In contrast, resilient plants grow slowly, are small, and allocate their resources for survival in challenging environments. One small group of plants, termed resurrection plants, survive desiccation of their vegetative tissue and regain full metabolic activity upon watering. However, the precise molecular mechanisms underlying this extreme tolerance remain unknown. In this study, we employed a transcriptomics and metabolomics approach, to investigate the mechanisms of desiccation tolerance in Tripogon loliiformis, a modified desiccation-tolerant plant, that survives gradual but not rapid drying. We show that T. loliiformis can survive rapid desiccation if it is gradually dried to 60% relative water content (RWC). Furthermore, the gene expression data showed that T. loliiformis is genetically predisposed for desiccation in the hydrated state, as evidenced by the accumulation of MYB, NAC, bZIP, WRKY transcription factors along with the phytohormones, abscisic acid, salicylic acid, amino acids (e.g., proline) and TCA cycle sugars during initial drying. Through network analysis of co-expressed genes, we observed differential responses to desiccation between T. loliiformis shoots and roots. Dehydrating shoots displayed global transcriptional changes across broad functional categories, although no enrichment was observed during drying. In contrast, dehydrating roots showed distinct network changes with the most significant differences occurring at 40% RWC. The cumulative effects of the early stress responses may indicate the minimum requirements of desiccation tolerance and enable T. loliiformis to survive rapid drying. These findings potentially hold promise for identifying biotechnological solutions aimed at developing drought-tolerant crops without growth and yield penalties.
作物和野生弹性物种采用不同的策略来调节它们的能量资源和生长。大多数作物物种对压力敏感,优先快速生长以最大限度地提高产量或生物量生产。相比之下,弹性植物生长缓慢,体型较小,并将资源分配用于在具有挑战性的环境中生存。一小部分植物被称为复苏植物,它们能够耐受其营养组织的干燥,并在浇水后恢复全部代谢活性。然而,这种极端耐受的精确分子机制仍然未知。在这项研究中,我们采用转录组学和代谢组学方法,研究了改良耐旱植物 Tripogon loliiformis 脱水耐受性的机制,该植物能够逐渐但不能快速干燥存活。我们表明,如果将 T. loliiformis 逐渐干燥至 60%相对含水量(RWC),它可以耐受快速干燥。此外,基因表达数据表明,T. loliiformis 在水合状态下就具有脱水的遗传倾向,这表现为在初始干燥过程中积累了 MYB、NAC、bZIP、WRKY 转录因子以及植物激素脱落酸、水杨酸、氨基酸(如脯氨酸)和 TCA 循环糖。通过共表达基因的网络分析,我们观察到 T. loliiformis 地上部和根部对脱水的反应不同。脱水的地上部显示出广泛的功能类别中的全局转录变化,尽管在干燥过程中没有观察到富集。相比之下,脱水的根部显示出明显的网络变化,最大差异发生在 40% RWC 时。早期应激反应的累积效应可能表明脱水耐受性的最低要求,并使 T. loliiformis 能够耐受快速干燥。这些发现可能有助于确定旨在开发耐旱作物而不牺牲生长和产量的生物技术解决方案。