Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
Helmholtz-Center for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany.
Genome Biol. 2023 Nov 23;24(1):265. doi: 10.1186/s13059-023-03107-4.
"Red tides" are harmful algal blooms caused by dinoflagellate microalgae that accumulate toxins lethal to other organisms, including humans via consumption of contaminated seafood. These algal blooms are driven by a combination of environmental factors including nutrient enrichment, particularly in warm waters, and are increasingly frequent. The molecular, regulatory, and evolutionary mechanisms that underlie the heat stress response in these harmful bloom-forming algal species remain little understood, due in part to the limited genomic resources from dinoflagellates, complicated by the large sizes of genomes, exhibiting features atypical of eukaryotes.
We present the de novo assembled genome (~ 4.75 Gbp with 85,849 protein-coding genes), transcriptome, proteome, and metabolome from Prorocentrum cordatum, a globally abundant, bloom-forming dinoflagellate. Using axenic algal cultures, we study the molecular mechanisms that underpin the algal response to heat stress, which is relevant to current ocean warming trends. We present the first evidence of a complementary interplay between RNA editing and exon usage that regulates the expression and functional diversity of biomolecules, reflected by reduction in photosynthesis, central metabolism, and protein synthesis. These results reveal genomic signatures and post-transcriptional regulation for the first time in a pelagic dinoflagellate.
Our multi-omics analyses uncover the molecular response to heat stress in an important bloom-forming algal species, which is driven by complex gene structures in a large, high-G+C genome, combined with multi-level transcriptional regulation. The dynamics and interplay of molecular regulatory mechanisms may explain in part how dinoflagellates diversified to become some of the most ecologically successful organisms on Earth.
“赤潮”是由甲藻微藻类产生的有害藻类大量繁殖而导致的,这些藻类会通过食用受污染的海鲜等途径积累毒素,从而对其他生物(包括人类)造成致命影响。这些藻类的繁殖是由包括富营养化在内的多种环境因素共同作用的结果,特别是在温暖的水域中,赤潮的发生越来越频繁。由于甲藻的基因组较大,具有非典型的真核生物特征,且其基因组资源有限,因此,这些形成有害水华的藻类物种的热应激反应的分子、调控和进化机制仍知之甚少。
我们展示了来自具齿原甲藻(Prorocentrum cordatum)的从头组装基因组(~47.5 Gbp,包含 85849 个蛋白质编码基因)、转录组、蛋白质组和代谢组。利用无菌藻类培养物,我们研究了支持藻类对热应激反应的分子机制,这与当前海洋变暖趋势相关。我们首次提出了 RNA 编辑和外显子使用之间互补相互作用的证据,这种相互作用调节了生物分子的表达和功能多样性,反映在光合作用、中心代谢和蛋白质合成的减少。这些结果首次揭示了在浮游甲藻中基因组特征和转录后调控。
我们的多组学分析揭示了重要水华形成藻类物种对热应激的分子反应,这是由大型高 GC 基因组中的复杂基因结构与多层次转录调控共同驱动的。分子调控机制的动态和相互作用可能部分解释了甲藻如何多样化成为地球上一些最成功的生态生物。