Ishida Hisatake, John Uwe, Murray Shauna A, Bhattacharya Debashish, Chan Cheong Xin
School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland, Australia.
Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
J Phycol. 2023 Oct;59(5):799-808. doi: 10.1111/jpy.13386. Epub 2023 Sep 1.
Dinoflagellates are a diverse group of eukaryotic microbes that are ubiquitous in aquatic environments. Largely photosynthetic, they encompass symbiotic, parasitic, and free-living lineages with a broad spectrum of trophism. Many free-living taxa can produce bioactive secondary metabolites such as biotoxins, some of which cause harmful algal blooms. In contrast, most symbiotic species are crucial for sustaining coral reef health. The year 2023 marked a decade since the first genome data of dinoflagellates became available. The growing genome-scale resources for these taxa are highlighting their remarkable evolutionary and genomic complexities. Here, we discuss the prospect of developing dinoflagellate models using the criteria of accessibility, tractability, resources, research support, and promise. Moving forward in the post-genomic era, we argue for the development of fit-to-purpose models that tailor to specific biological contexts, and that a one-size-fits-all model is inadequate for encapsulating the complex biology, ecology, and evolutionary history of dinoflagellates.
甲藻是一类多样的真核微生物,在水生环境中无处不在。它们主要进行光合作用,包括具有广泛营养方式的共生、寄生和自由生活谱系。许多自由生活的分类群能够产生生物活性次生代谢物,如生物毒素,其中一些会导致有害藻华。相比之下,大多数共生物种对于维持珊瑚礁健康至关重要。2023年标志着甲藻的首个基因组数据问世已有十年。这些分类群越来越多的基因组规模资源凸显了它们显著的进化和基因组复杂性。在此,我们根据可及性、易处理性、资源、研究支持和前景等标准,讨论开发甲藻模型的前景。在后基因组时代向前发展,我们主张开发适用于特定生物学背景的量身定制模型,并且通用模型不足以概括甲藻复杂的生物学、生态学和进化史。