School of Mathematics and Science, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany.
Faculty of Natural Sciences, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany.
Plant Physiol. 2024 Apr 30;195(1):306-325. doi: 10.1093/plphys/kiae052.
Marine photosynthetic (micro)organisms drive multiple biogeochemical cycles and display a large diversity. Among them, the bloom-forming, free-living dinoflagellate Prorocentrum cordatum CCMP 1329 (formerly P. minimum) stands out with its distinct cell biological features. Here, we obtained insights into the structural properties of the chloroplast and the photosynthetic machinery of P. cordatum using microscopic and proteogenomic approaches. High-resolution FIB/SEM analysis revealed a single large chloroplast (∼40% of total cell volume) with a continuous barrel-like structure, completely lining the inner face of the cell envelope and enclosing a single reticular mitochondrium, the Golgi apparatus, as well as diverse storage inclusions. Enriched thylakoid membrane fractions of P. cordatum were comparatively analyzed with those of the well-studied model-species Arabidopsis (Arabidopsis thaliana) using 2D BN DIGE. Strikingly, P. cordatum possessed a large photosystem-light harvesting megacomplex (>1.5 MDa), which is dominated by photosystems I and II (PSI, PSII), chloroplast complex I, and chlorophyll a-b binding light harvesting complex proteins. This finding parallels the absence of grana in its chloroplast and distinguishes from the predominant separation of PSI and PSII complexes in A. thaliana, indicating a different mode of flux balancing. Except for the core elements of the ATP synthase and the cytb6f-complex, the composition of the other complexes (PSI, PSII, and pigment-binding proteins, PBPs) of P. cordatum differed markedly from those of A. thaliana. Furthermore, a high number of PBPs was detected, accounting for a large share of the total proteomic data (∼65%) and potentially providing P. cordatum with flexible adaptation to changing light regimes.
海洋光合(微)生物驱动着多个生物地球化学循环,并表现出丰富的多样性。其中,自由生活的甲藻原甲藻(Prorocentrum cordatum CCMP 1329,以前称为 P. minimum)因其独特的细胞生物学特征而引人注目。在这里,我们使用显微镜和蛋白质基因组学方法深入了解了原甲藻叶绿体和光合作用机制的结构特性。高分辨率的 FIB/SEM 分析揭示了一个单一的大型叶绿体(约占细胞体积的 40%),具有连续的桶状结构,完全覆盖在细胞包膜的内表面,包围着一个单一的网状线粒体、高尔基体以及各种储存内含物。通过 2D BN DIGE 比较分析了原甲藻富含类囊体膜的部分与研究较为深入的模式物种拟南芥(Arabidopsis thaliana)的类囊体膜部分。引人注目的是,原甲藻拥有一个庞大的光系统-光捕获巨复合物(>1.5 MDa),主要由光系统 I 和 II(PSI、PSII)、叶绿体复合物 I 和叶绿素 a-b 结合光捕获复合物蛋白组成。这一发现与原甲藻叶绿体中没有基粒的情况相吻合,与拟南芥 PSI 和 PSII 复合物的主要分离情况不同,表明了不同的通量平衡模式。除了 ATP 合酶和 Cytb6f 复合物的核心元件外,原甲藻其他复合物(PSI、PSII 和色素结合蛋白,PBPs)的组成与拟南芥明显不同。此外,检测到大量的 PBPs,占总蛋白质组数据的很大一部分(约 65%),可能为原甲藻提供了灵活适应不断变化的光照条件的能力。