Arslan Sermal, Kaya Mehmet Kaan, Tasci Burak, Kaya Suheda, Tasci Gulay, Ozsoy Filiz, Dogan Sengul, Tuncer Turker
Universal Eye Clinic, 23119 Elazig, Turkey.
Vocational School of Technical Sciences, Firat University, 23119 Elazig, Turkey.
Diagnostics (Basel). 2023 Nov 10;13(22):3422. doi: 10.3390/diagnostics13223422.
In the era of deep learning, numerous models have emerged in the literature and various application domains. Transformer architectures, particularly, have gained popularity in deep learning, with diverse transformer-based computer vision algorithms. Attention convolutional neural networks (CNNs) have been introduced to enhance image classification capabilities. In this context, we propose a novel attention convolutional model with the primary objective of detecting bipolar disorder using optical coherence tomography (OCT) images. To facilitate our study, we curated a unique OCT image dataset, initially comprising two distinct cases. For the development of an automated OCT image detection system, we introduce a new attention convolutional neural network named "TurkerNeXt". This proposed Attention TurkerNeXt encompasses four key modules: (i) the patchify stem block, (ii) the Attention TurkerNeXt block, (iii) the patchify downsampling block, and (iv) the output block. In line with the swin transformer, we employed a patchify operation in this study. The design of the attention block, Attention TurkerNeXt, draws inspiration from ConvNeXt, with an added shortcut operation to mitigate the vanishing gradient problem. The overall architecture is influenced by ResNet18. The dataset comprises two distinctive cases: (i) top to bottom and (ii) left to right. Each case contains 987 training and 328 test images. Our newly proposed Attention TurkerNeXt achieved 100% test and validation accuracies for both cases. We curated a novel OCT dataset and introduced a new CNN, named TurkerNeXt in this research. Based on the research findings and classification results, our proposed TurkerNeXt model demonstrated excellent classification performance. This investigation distinctly underscores the potential of OCT images as a biomarker for bipolar disorder.
在深度学习时代,文献中涌现出众多模型,并应用于各个领域。特别是Transformer架构在深度学习中颇受欢迎,基于Transformer的计算机视觉算法多种多样。注意力卷积神经网络(CNN)已被引入以增强图像分类能力。在此背景下,我们提出了一种新颖的注意力卷积模型,其主要目标是使用光学相干断层扫描(OCT)图像检测双相情感障碍。为便于研究,我们精心策划了一个独特的OCT图像数据集,最初包含两种不同的情况。为了开发一个自动化的OCT图像检测系统,我们引入了一个名为“TurkerNeXt”的新型注意力卷积神经网络。这个提出的注意力TurkerNeXt包含四个关键模块:(i)分块主干块,(ii)注意力TurkerNeXt块,(iii)分块下采样块,以及(iv)输出块。与Swin Transformer一致,我们在本研究中采用了分块操作。注意力块Attention TurkerNeXt的设计灵感来自ConvNeXt,并增加了一个捷径操作以减轻梯度消失问题。整体架构受ResNet18影响。该数据集包含两种不同的情况:(i)从上到下和(ii)从左到右。每种情况包含987张训练图像和328张测试图像。我们新提出的注意力TurkerNeXt在两种情况下的测试和验证准确率均达到了100%。我们策划了一个新颖的OCT数据集,并在本研究中引入了一个名为TurkerNeXt的新CNN。基于研究结果和分类结果,我们提出的TurkerNeXt模型表现出了出色的分类性能。这项研究清楚地强调了OCT图像作为双相情感障碍生物标志物的潜力。