Suppr超能文献

基于混合深度学习和蚁群优化的光学相干断层扫描图像分类。

Optical Coherence Tomography Image Classification Using Hybrid Deep Learning and Ant Colony Optimization.

机构信息

Department of ICT Convergence, Soonchunhyang University, Asan 31538, Republic of Korea.

Department of Ophthalmology, Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Republic of Korea.

出版信息

Sensors (Basel). 2023 Jul 26;23(15):6706. doi: 10.3390/s23156706.

Abstract

Optical coherence tomography (OCT) is widely used to detect and classify retinal diseases. However, OCT-image-based manual detection by ophthalmologists is prone to errors and subjectivity. Thus, various automation methods have been proposed; however, improvements in detection accuracy are required. Particularly, automated techniques using deep learning on OCT images are being developed to detect various retinal disorders at an early stage. Here, we propose a deep learning-based automatic method for detecting and classifying retinal diseases using OCT images. The diseases include age-related macular degeneration, branch retinal vein occlusion, central retinal vein occlusion, central serous chorioretinopathy, and diabetic macular edema. The proposed method comprises four main steps: three pretrained models, DenseNet-201, InceptionV3, and ResNet-50, are first modified according to the nature of the dataset, after which the features are extracted via transfer learning. The extracted features are improved, and the best features are selected using ant colony optimization. Finally, the best features are passed to the k-nearest neighbors and support vector machine algorithms for final classification. The proposed method, evaluated using OCT retinal images collected from Soonchunhyang University Bucheon Hospital, demonstrates an accuracy of 99.1% with the incorporation of ACO. Without ACO, the accuracy achieved is 97.4%. Furthermore, the proposed method exhibits state-of-the-art performance and outperforms existing techniques in terms of accuracy.

摘要

光学相干断层扫描(OCT)被广泛用于检测和分类视网膜疾病。然而,眼科医生基于 OCT 图像的手动检测容易出错且具有主观性。因此,已经提出了各种自动化方法;然而,需要提高检测准确性。特别是,正在开发基于 OCT 图像的深度学习的自动技术,以在早期检测各种视网膜疾病。在这里,我们提出了一种基于深度学习的自动方法,用于使用 OCT 图像检测和分类视网膜疾病。这些疾病包括年龄相关性黄斑变性、分支视网膜静脉阻塞、中央视网膜静脉阻塞、中心性浆液性脉络膜视网膜病变和糖尿病性黄斑水肿。所提出的方法包括四个主要步骤:首先根据数据集的性质修改三个预先训练的模型,即 DenseNet-201、InceptionV3 和 ResNet-50,然后通过迁移学习提取特征。提取的特征得到改进,并使用蚁群优化选择最佳特征。最后,将最佳特征传递给 k-最近邻和支持向量机算法进行最终分类。使用 Soonchunhyang University Bucheon 医院采集的 OCT 视网膜图像评估所提出的方法,在包含 ACO 的情况下准确率为 99.1%。不包含 ACO 的情况下,准确率为 97.4%。此外,所提出的方法在准确性方面表现出最先进的性能,优于现有技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad52/10422382/eb9baf448be4/sensors-23-06706-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验