Sundaraj Yasotha, Abdullah Hasdianty, Nezhad Nima Ghahremani, Rasib Afiq Adham Abd, Othman Roohaida, Rodrigues Kenneth Francis, Sabri Suriana, Baharum Syarul Nataqain
Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
Faculty of Engineering and Life Sciences, Universiti Selangor (UNISEL), Bestari Jaya 45600, Selangor, Malaysia.
Curr Issues Mol Biol. 2023 Nov 10;45(11):8989-9002. doi: 10.3390/cimb45110564.
This study describes the cloning, expression and functional characterization of α-humulene synthase, responsible for the formation of the key aromatic compound α-humulene in agarwood originating from . The partial sesquiterpene synthase gene from the transcriptome data of was utilized for full-length gene isolation via a 3' RACE PCR. The complete gene, denoted as , has an open reading frame (ORF) of 1671 bp and encodes for a polypeptide of 556 amino acids. In silico analysis of the protein highlighted several conserved motifs typically found in terpene synthases such as Asp-rich substrate binding (DDxxD), metal-binding residues (NSE/DTE), and cytoplasmic ER retention (RxR) motifs at their respective sites. The was successfully expressed in the :pET-28a(+) expression vector whereby an expected band of about 64 kDa in size was detected in the SDS-PAGE gel. In vitro enzyme assay using substrate farnesyl pyrophosphate (FPP) revealed that AmDG2 gave rise to two sesquiterpenes: α-humulene (major) and β-caryophyllene (minor), affirming its identity as α-humulene synthase. On the other hand, protein modeling performed using AlphaFold2 suggested that AmDG2 consists entirely of α-helices with short connecting loops and turns. Meanwhile, molecular docking via AutoDock Vina (Version 1.5.7) predicted that Asp307 and Asp311 act as catalytic residues in the α-humulene synthase. To our knowledge, this is the first comprehensive report on the cloning, expression and functional characterization of α-humulene synthase from agarwood originating from species. These findings reveal a deeper understanding of the structure and functional properties of the α-humulene synthase and could be utilized for metabolic engineering work in the future.
本研究描述了α-葎草烯合酶的克隆、表达及功能特性,该酶负责沉香中关键芳香化合物α-葎草烯的形成。利用来自[物种名称]转录组数据的部分倍半萜合酶基因,通过3' RACE PCR进行全长基因分离。完整基因命名为[基因名称],具有1671 bp的开放阅读框(ORF),编码一个556个氨基酸的多肽。对该蛋白质的计算机分析突出了几个在萜烯合酶中常见的保守基序,如富含天冬氨酸的底物结合基序(DDxxD)、金属结合残基(NSE/DTE)以及位于各自位点的细胞质内质网滞留基序(RxR)。[基因名称]在[pET - 28a(+)]表达载体中成功表达,在SDS - PAGE凝胶中检测到一条预期大小约为64 kDa的条带。使用底物法呢基焦磷酸(FPP)进行的体外酶活性测定表明,AmDG2产生了两种倍半萜:α-葎草烯(主要产物)和β-石竹烯(次要产物),证实了其作为α-葎草烯合酶的身份。另一方面,使用AlphaFold2进行的蛋白质建模表明,AmDG2完全由α-螺旋组成,带有短的连接环和转角。同时,通过AutoDock Vina(版本1.5.7)进行的分子对接预测,天冬氨酸307和天冬氨酸311在α-葎草烯合酶中作为催化残基。据我们所知,这是关于来自[物种名称]沉香中α-葎草烯合酶的克隆、表达及功能特性的第一份全面报告。这些发现揭示了对α-葎草烯合酶结构和功能特性的更深入理解,并可在未来用于代谢工程工作。