Suppr超能文献

用于有害藻华监测和管理的数字孪生湖框架。

A Digital Twin Lake Framework for Monitoring and Management of Harmful Algal Blooms.

机构信息

Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.

Powerchina Zhongnan Engineering Corporation Limited, Changsha 410014, China.

出版信息

Toxins (Basel). 2023 Nov 17;15(11):665. doi: 10.3390/toxins15110665.

Abstract

Harmful algal blooms (HABs) caused by lake eutrophication and climate change have become one of the most serious problems for the global water environment. Timely and comprehensive data on HABs are essential for their scientific management, a need unmet by traditional methods. This study constructed a novel digital twin lake framework (DTLF) aiming to integrate, represent and analyze multi-source monitoring data on HABs and water quality, so as to support the prevention and control of HABs. In this framework, different from traditional research, browser-based front ends were used to execute the video-based HAB monitoring process, and real-time monitoring in the real sense was realized. On this basis, multi-source monitored results of HABs and water quality were integrated and displayed in the constructed DTLF, and information on HABs and water quality can be grasped comprehensively, visualized realistically and analyzed precisely. Experimental results demonstrate the satisfying frequency of video-based HAB monitoring (once per second) and the valuable results of multi-source data integration and analysis for HAB management. This study demonstrated the high value of the constructed DTLF in accurate monitoring and scientific management of HABs in lakes.

摘要

富营养化和气候变化引起的有害藻华(HAB)已成为全球水环境最严重的问题之一。及时、全面的 HAB 数据对于其科学管理至关重要,而传统方法无法满足这一需求。本研究构建了一种新颖的数字孪生湖框架(DTLF),旨在整合、表示和分析 HAB 和水质的多源监测数据,以支持 HAB 的防控。在该框架中,与传统研究不同,基于浏览器的前端用于执行基于视频的 HAB 监测过程,实现了真正意义上的实时监测。在此基础上,将 HAB 和水质的多源监测结果集成并显示在构建的 DTLF 中,可以全面、真实地掌握 HAB 和水质信息,并进行精确分析。实验结果表明,基于视频的 HAB 监测的频率(每秒一次)令人满意,多源数据集成和分析对于 HAB 管理具有有价值的结果。本研究证明了所构建的 DTLF 在湖泊中准确监测和科学管理 HAB 方面具有很高的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d03/10675087/d628775f5f82/toxins-15-00665-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验