Suppr超能文献

中国湖泊和水库有害藻类水华的规模和驱动因素:一项全国性的特征描述。

The magnitude and drivers of harmful algal blooms in China's lakes and reservoirs: A national-scale characterization.

机构信息

Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China.

China National Environmental Monitoring Centre, 8(B) Dayangfang Beiyuan Road, Chaoyang District, Beijing, 100012, China.

出版信息

Water Res. 2020 Aug 15;181:115902. doi: 10.1016/j.watres.2020.115902. Epub 2020 May 14.

Abstract

Harmful algal blooms (HABs) can have dire repercussions on aquatic wildlife and human health, and may negatively affect recreational uses, aesthetics, taste, and odor in drinking water. The factors that influence the occurrence and magnitude of harmful algal blooms and toxin production remain poorly understood and can vary in space and time. It is within this context that we use machine learning (ML) and two 14-year (2005-2018) data sets on water quality and meteorological conditions of China's lakes and reservoirs to shed light on the magnitude and associated drivers of HAB events. General regression neural network (GRNN) models are developed to predict chlorophyll a concentrations for each lake and reservoir during two study periods (2005-2010 and 2011-2018). The developed models with an acceptable model fit are then analyzed by two indices to determine the areal HAB magnitudes and associated drivers. Our national assessment suggests that HAB magnitudes for China's lakes and reservoirs displayed a decreasing trend from 2006 (1363.3 km) to 2013 (665.2 km), and a slightly increasing trend from 2013 to 2018 (775.4 km). Among the 142 studied lakes and reservoirs, most severe HABs were found in Lakes Taihu, Dianchi and Chaohu with their contribution to the total HAB magnitude varying from 89.2% (2013) to 62.6% (2018). HABs in Lakes Taihu and Chaohu were strongly associated with both total phosphorus and nitrogen concentrations, while our results were inconclusive with respect to the predominant environmental factors shaping the eutrophication phenomena in Lake Dianchi. The present study provides evidence that effective HAB mitigation may require both nitrogen and phosphorus reductions and longer recovery times; especially in view of the current climate-change projections. ML represents a robust strategy to elucidate water quality patterns in lakes, where the available information is sufficient to train the constructed algorithms. Our mapping of HAB magnitudes and associated environmental/meteorological drivers can help managers to delineate hot-spots at a national scale, and comprehensively design the best management practices for mitigating the eutrophication severity in China's lakes and reservoirs.

摘要

有害藻华 (HABs) 会对水生野生动物和人类健康产生严重影响,并可能对娱乐用途、水的美感、味道和气味产生负面影响。影响有害藻华发生和规模以及毒素产生的因素仍了解甚少,并且在空间和时间上可能会有所不同。正是在这种背景下,我们使用机器学习 (ML) 和两个为期 14 年(2005-2018 年)的中国湖泊和水库水质和气象条件数据集,来揭示 HAB 事件的规模和相关驱动因素。我们为每个湖泊和水库开发了广义回归神经网络 (GRNN) 模型,以预测两个研究期间(2005-2010 年和 2011-2018 年)的叶绿素 a 浓度。然后,使用两个指标对具有可接受模型拟合度的开发模型进行分析,以确定区域 HAB 规模和相关驱动因素。我们的国家评估表明,中国湖泊和水库的 HAB 规模从 2006 年(1363.3 公里)呈下降趋势到 2013 年(665.2 公里),然后从 2013 年到 2018 年(775.4 公里)略有上升。在所研究的 142 个湖泊和水库中,最严重的 HAB 发生在太湖、滇池和巢湖,它们对总 HAB 规模的贡献从 2013 年的 89.2%到 2018 年的 62.6%不等。太湖和巢湖的 HAB 与总磷和氮浓度密切相关,而我们的结果对于塑造滇池富营养化现象的主要环境因素尚没有定论。本研究表明,有效缓解 HAB 可能需要减少氮和磷的排放,并需要更长的恢复时间;特别是考虑到当前的气候变化预测。ML 是阐明湖泊水质模式的一种强大策略,在这种策略中,可用信息足以训练构建的算法。我们对 HAB 规模和相关环境/气象驱动因素的制图可以帮助管理人员在全国范围内划定热点地区,并全面设计缓解中国湖泊和水库富营养化严重程度的最佳管理实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验