Suppr超能文献

基于 GOCI 图像的太湖有害藻华(HABs)逐时遥感监测。

Hourly remote sensing monitoring of harmful algal blooms (HABs) in Taihu Lake based on GOCI images.

机构信息

College of Geological Engineering and Geomatics, Chang'an University, Xi'an, China.

School of Land Engineering, Chang'an University, Xi'an, 710064, China.

出版信息

Environ Sci Pollut Res Int. 2021 Jul;28(27):35958-35970. doi: 10.1007/s11356-021-13318-6. Epub 2021 Mar 8.

Abstract

The increasingly serious harmful algal blooms (HABs) in Taihu Lake has brought huge losses to the local economy and people's life in Taihu Lake. Satellite remote sensing technology has become one of the most important monitoring methods for HAB disasters due to its large-scale and long-term advantages. GOCI image has become the new data source of HAB monitoring because of its large size and high time resolution. Due to the low spatial resolution (500 m) and the existence of mixed pixels, the error of HAB area obtained by the NDVI method is large. In this paper, the linear mixing model (LMM) and the normalized difference vegetation index (NDVI) threshold method are combined to extract the HAB area from GOCI images with 500-m spatial resolution. Compared with the results of the HAB area extracted by Landsat8 OLI and MODIS data, three small areas in the study area were selected to verify the accuracy of the HAB area extracted from the GOCI image on October 2, 2015. The results show that when the NDVI threshold is 0.1, the area error of HABs is the smallest when the extracted HAB pixels mask the decomposition results of mixed pixels; besides, the area error of HABs extracted from the GOCI image is smaller than that from MODIS image; finally, GOCI image can extract the spatial dynamic distribution of HABs in Taihu Lake within 8 h a day, which has higher temporal resolution than the MODIS image. Compared with the NDVI threshold method and LMM method, the inversion accuracy is greatly improved, and the accuracy is stable in different regions. It can provide technical support for the decision-making and assessment of HAB ecological disasters.

摘要

太湖日益严重的有害藻华(HAB)给当地经济和人民生活带来了巨大损失。卫星遥感技术由于其大规模和长期优势,已成为 HAB 灾害监测的最重要方法之一。GOCI 图像由于其规模大和时间分辨率高,已成为 HAB 监测的新数据源。由于空间分辨率低(500m)和混合像素的存在,NDVI 方法获得的 HAB 面积误差较大。本文结合线性混合模型(LMM)和归一化差异植被指数(NDVI)阈值法,从 GOCI 图像中提取 500m 空间分辨率的 HAB 面积。与从 Landsat8 OLI 和 MODIS 数据提取的 HAB 面积结果相比,选择研究区域中的三个小区域,以验证 2015 年 10 月 2 日从 GOCI 图像中提取的 HAB 面积的准确性。结果表明,当 NDVI 阈值为 0.1 时,提取的 HAB 像素掩模混合像素分解结果时,HAB 的面积误差最小;此外,从 GOCI 图像中提取的 HAB 面积误差小于从 MODIS 图像中提取的 HAB 面积误差;最后,GOCI 图像可以在一天内 8 小时内提取太湖 HAB 的空间动态分布,其时间分辨率高于 MODIS 图像。与 NDVI 阈值法和 LMM 法相比,反演精度大大提高,在不同区域稳定。它可以为 HAB 生态灾害的决策和评估提供技术支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验