Department of Forensic Medicine, Guizhou Medical University, Guiyang, China.
Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China.
Int J Legal Med. 2024 May;138(3):849-858. doi: 10.1007/s00414-023-03136-5. Epub 2023 Nov 24.
Pulmonary fat embolism (PFE) as a cause of death often occurs in trauma cases such as fractures and soft tissue contusions. Traditional PFE diagnosis relies on subjective methods and special stains like oil red O. This study utilizes computational pathology, combining digital pathology and deep learning algorithms, to precisely quantify fat emboli in whole slide images using conventional hematoxylin-eosin (H&E) staining. The results demonstrate deep learning's ability to identify fat droplet morphology in lung microvessels, achieving an area under the receiver operating characteristic (ROC) curve (AUC) of 0.98. The AI-quantified fat globules generally matched the Falzi scoring system with oil red O staining. The relative quantity of fat emboli against lung area was calculated by the algorithm, determining a diagnostic threshold of 8.275% for fatal PFE. A diagnostic strategy based on this threshold achieved a high AUC of 0.984, similar to manual identification with special stains but surpassing H&E staining. This demonstrates computational pathology's potential as an affordable, rapid, and precise method for fatal PFE diagnosis in forensic practice.
肺脂肪栓塞(PFE)作为一种死亡原因,常发生于骨折和软组织挫伤等创伤病例中。传统的 PFE 诊断依赖于主观方法和油红 O 等特殊染色。本研究利用计算病理学,结合数字病理学和深度学习算法,使用常规苏木精-伊红(H&E)染色,精确量化全切片图像中的脂肪栓塞。研究结果表明,深度学习能够识别肺微血管中的脂肪滴形态,其接受者操作特征曲线(ROC)下面积(AUC)为 0.98。人工智能量化的脂肪球与油红 O 染色的 Falzi 评分系统基本吻合。该算法计算了脂肪栓塞相对于肺面积的相对数量,确定了致死性 PFE 的诊断阈值为 8.275%。基于该阈值的诊断策略获得了 0.984 的高 AUC,与特殊染色的手动识别相似,但优于 H&E 染色。这表明计算病理学具有成为法医学中致死性 PFE 诊断的一种经济、快速和精确方法的潜力。