Suppr超能文献

基于机器学习的病理组学特征在膀胱癌诊断和生存预测中的临床应用。

Clinical use of machine learning-based pathomics signature for diagnosis and survival prediction of bladder cancer.

机构信息

Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Cancer Sci. 2021 Jul;112(7):2905-2914. doi: 10.1111/cas.14927. Epub 2021 May 5.

Abstract

Traditional histopathology performed by pathologists by the naked eye is insufficient for accurate and efficient diagnosis of bladder cancer (BCa). We collected 643 H&E-stained BCa images from Shanghai General Hospital and The Cancer Genome Atlas (TCGA). We constructed and cross-verified automatic diagnosis and prognosis models by performing a machine learning algorithm based on pathomics data. Our study indicated that high diagnostic efficiency of the machine learning-based diagnosis model was observed in patients with BCa, with area under the curve (AUC) values of 96.3%, 89.2%, and 94.1% in the training cohort, test cohort, and external validation cohort, respectively. Our diagnosis model also performed well in distinguishing patients with BCa from patients with glandular cystitis, with an AUC value of 93.4% in the General cohort. Significant differences were found in overall survival in TCGA cohort (hazard ratio (HR) = 2.09, 95% confidence interval (CI): 1.56-2.81, P < .0001) and the General cohort (HR = 5.32, 95% CI: 2.95-9.59, P < .0001) comparing patients with BCa of high risk vs low risk stratified by risk score, which was proved to be an independent prognostic factor for BCa. The integration nomogram based on our risk score and clinicopathologic characters displayed higher prediction accuracy than current tumor stage/grade systems, with AUC values of 77.7%, 83.8%, and 81.3% for 1-, 3-, and 5-y overall survival prediction of patients with BCa. However, prospective studies are still needed for further verifications.

摘要

传统的病理学家肉眼进行的组织病理学检查对于膀胱癌(BCa)的准确和高效诊断是不够的。我们从上海总医院和癌症基因组图谱(TCGA)收集了 643 张 H&E 染色的 BCa 图像。我们通过基于病理组学数据的机器学习算法构建并交叉验证了自动诊断和预后模型。我们的研究表明,基于机器学习的诊断模型在 BCa 患者中具有较高的诊断效率,在训练队列、测试队列和外部验证队列中的曲线下面积(AUC)值分别为 96.3%、89.2%和 94.1%。我们的诊断模型在区分 BCa 患者和腺性膀胱炎患者方面也表现良好,在一般人群中的 AUC 值为 93.4%。在 TCGA 队列中,总生存期存在显著差异(危险比(HR)=2.09,95%置信区间(CI):1.56-2.81,P<0.0001)和一般队列(HR=5.32,95%CI:2.95-9.59,P<0.0001),比较高风险和低风险的 BCa 患者,风险评分分层,这被证明是 BCa 的一个独立预后因素。基于我们的风险评分和临床病理特征的综合列线图显示出比当前的肿瘤分期/分级系统更高的预测准确性,对于 BCa 患者的 1 年、3 年和 5 年总生存率预测,AUC 值分别为 77.7%、83.8%和 81.3%。然而,仍需要前瞻性研究进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b80/8253293/530c35879bb6/CAS-112-2905-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验