Suppr超能文献

面向类别不平衡组织学图像分类的中心聚焦亲和损失。

Center-Focused Affinity Loss for Class Imbalance Histology Image Classification.

出版信息

IEEE J Biomed Health Inform. 2024 Feb;28(2):952-963. doi: 10.1109/JBHI.2023.3336372. Epub 2024 Feb 5.

Abstract

Early-stage cancer diagnosis potentially improves the chances of survival for many cancer patients worldwide. Manual examination of Whole Slide Images (WSIs) is a time-consuming task for analyzing tumor-microenvironment. To overcome this limitation, the conjunction of deep learning with computational pathology has been proposed to assist pathologists in efficiently prognosing the cancerous spread. Nevertheless, the existing deep learning methods are ill-equipped to handle fine-grained histopathology datasets. This is because these models are constrained via conventional softmax loss function, which cannot expose them to learn distinct representational embeddings of the similarly textured WSIs containing an imbalanced data distribution. To address this problem, we propose a novel center-focused affinity loss (CFAL) function that exhibits 1) constructing uniformly distributed class prototypes in the feature space, 2) penalizing difficult samples, 3) minimizing intra-class variations, and 4) placing greater emphasis on learning minority class features. We evaluated the performance of the proposed CFAL loss function on two publicly available breast and colon cancer datasets having varying levels of imbalanced classes. The proposed CFAL function shows better discrimination abilities as compared to the popular loss functions such as ArcFace, CosFace, and Focal loss. Moreover, it outperforms several SOTA methods for histology image classification across both datasets.

摘要

早期癌症诊断有可能提高全球许多癌症患者的生存机会。手动检查全切片图像(WSI)是分析肿瘤微环境的一项耗时任务。为了克服这一限制,已经提出将深度学习与计算病理学相结合,以帮助病理学家有效地预测癌症的扩散。然而,现有的深度学习方法难以处理细粒度的组织病理学数据集。这是因为这些模型受到传统 softmax 损失函数的限制,无法使它们学习具有不平衡数据分布的相似纹理 WSI 的独特表示嵌入。为了解决这个问题,我们提出了一种新颖的中心聚焦亲和力损失(CFAL)函数,它具有以下功能:1)在特征空间中构建均匀分布的类原型;2)惩罚困难样本;3)最小化类内变化;4)更注重学习少数类特征。我们在两个具有不同不平衡类别水平的公开可用的乳腺癌和结肠癌数据集上评估了所提出的 CFAL 损失函数的性能。与流行的损失函数(如 ArcFace、CosFace 和 Focal loss)相比,所提出的 CFAL 函数显示出更好的区分能力。此外,它在两个数据集上的组织学图像分类方面均优于几种 SOTA 方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验