Suppr超能文献

DLCNBC-SA:一种评估早期乳腺癌患者腋窝淋巴结转移状态的模型

DLCNBC-SA: a model for assessing axillary lymph node metastasis status in early breast cancer patients.

作者信息

Zhang Aiguo, Chen Zhen, Mei Shengxiang, Ji Yunfan, Lin Yiqi, Shi Hua

机构信息

College of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China.

Institute of Spatial Information Technology, Xiamen University of Technology, Xiamen, China.

出版信息

Quant Imaging Med Surg. 2024 Aug 1;14(8):5831-5844. doi: 10.21037/qims-24-257. Epub 2024 Jul 26.

Abstract

BACKGROUND

Axillary lymph node (ALN) status is a crucial prognostic indicator for breast cancer metastasis, with manual interpretation of whole slide images (WSIs) being the current standard practice. However, this method is subjective and time-consuming. Recent advancements in deep learning-based methods for medical image analysis have shown promise in improving clinical diagnosis. This study aims to leverage these technological advancements to develop a deep learning model based on features extracted from primary tumor biopsies for preoperatively identifying ALN metastasis in early-stage breast cancer patients with negative nodes.

METHODS

We present DLCNBC-SA, a deep learning-based network specifically tailored for core needle biopsy and clinical data feature extraction, which integrates a self-attention mechanism (CNBC-SA). The proposed model consists of a feature extractor based on convolutional neural network (CNN) and an improved self-attention mechanism module, which can preserve the independence of features in WSIs for analysis and enhancement to provide rich feature representation. To validate the performance of the proposed model, we conducted comparative experiments and ablation studies using publicly available datasets, and verification was performed through quantitative analysis.

RESULTS

The comparative experiment illustrates the superior performance of the proposed model in the task of binary classification of ALNs, as compared to alternative methods. Our method achieved outstanding performance [area under the curve (AUC): 0.882] in this task, significantly surpassing the state-of-the-art (SOTA) method on the same dataset (AUC: 0.862). The ablation experiment reveals that incorporating RandomRotation data augmentation technology and utilizing Adadelta optimizer can effectively enhance the performance of the proposed model.

CONCLUSIONS

The experimental results demonstrate that the model proposed in this paper outperforms the SOTA model on the same dataset, thereby establishing its reliability as an assistant for pathologists in analyzing WSIs of breast cancer. Consequently, it significantly enhances both the efficiency and accuracy of doctors during the diagnostic process.

摘要

背景

腋窝淋巴结(ALN)状态是乳腺癌转移的关键预后指标,目前的标准做法是对全切片图像(WSIs)进行人工解读。然而,这种方法主观且耗时。基于深度学习的医学图像分析方法的最新进展在改善临床诊断方面显示出了前景。本研究旨在利用这些技术进步,开发一种基于原发肿瘤活检提取特征的深度学习模型,用于术前识别早期乳腺癌且腋窝淋巴结阴性患者的ALN转移情况。

方法

我们提出了DLCNBC-SA,这是一种专门为粗针活检和临床数据特征提取量身定制的基于深度学习的网络,它集成了自注意力机制(CNBC-SA)。所提出的模型由一个基于卷积神经网络(CNN)的特征提取器和一个改进的自注意力机制模块组成,该模块可以保留WSIs中特征的独立性以便进行分析和增强,从而提供丰富的特征表示。为了验证所提出模型的性能,我们使用公开可用的数据集进行了对比实验和消融研究,并通过定量分析进行了验证。

结果

对比实验表明,与其他方法相比,所提出的模型在ALN二元分类任务中具有卓越的性能。我们的方法在此任务中取得了出色的性能[曲线下面积(AUC):0.882],显著超过了同一数据集上的现有最优(SOTA)方法(AUC:0.862)。消融实验表明,结合随机旋转数据增强技术并使用Adadelta优化器可以有效提高所提出模型的性能。

结论

实验结果表明,本文提出的模型在同一数据集上优于SOTA模型,从而确立了其作为病理学家分析乳腺癌WSIs助手的可靠性。因此,它显著提高了医生在诊断过程中的效率和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55c1/11320494/ebace97b1695/qims-14-08-5831-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验