Suppr超能文献

DeepBLS:基于深度特征的大肠癌组织病理图像广谱学习系统。

DeepBLS: Deep Feature-Based Broad Learning System for Tissue Phenotyping in Colorectal Cancer WSIs.

机构信息

Electrical and Computer Engineering Department, Khalifa University, 12778, Abu Dhabi, United Arab Emirates.

Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, 33431, USA.

出版信息

J Digit Imaging. 2023 Aug;36(4):1653-1662. doi: 10.1007/s10278-023-00797-x. Epub 2023 Apr 14.

Abstract

Tissue phenotyping is a fundamental step in computational pathology for the analysis of tumor micro-environment in whole slide images (WSIs). Automatic tissue phenotyping in whole slide images (WSIs) of colorectal cancer (CRC) assists pathologists in better cancer grading and prognostication. In this paper, we propose a novel algorithm for the identification of distinct tissue components in colon cancer histology images by blending a comprehensive learning system with deep features extraction in the current work. Firstly, we extracted the features from the pre-trained VGG19 network which are then transformed into mapped features space for nodes enhancement generation. Utilizing both mapped features and enhancement nodes, the proposed algorithm classifies seven distinct tissue components including stroma, tumor, complex stroma, necrotic, normal benign, lymphocytes, and smooth muscle. To validate our proposed model, the experiments are performed on two publicly available colorectal cancer histology datasets. We showcase that our approach achieves a remarkable performance boost surpassing existing state-of-the-art methods by (1.3% AvTP, 2% F1) and (7% AvTP, 6% F1) on CRCD-1, and CRCD-2, respectively.

摘要

组织表型分析是计算病理学中分析全切片图像(WSI)中肿瘤微环境的基础步骤。在结直肠癌(CRC)的全切片图像(WSI)中进行自动组织表型分析有助于病理学家更好地进行癌症分级和预后判断。在本文中,我们提出了一种新的算法,通过在当前工作中混合综合学习系统和深度特征提取来识别结肠癌组织学图像中的不同组织成分。首先,我们从预训练的 VGG19 网络中提取特征,然后将其转换为映射特征空间,以生成节点增强。利用映射特征和增强节点,所提出的算法可以对包括基质、肿瘤、复杂基质、坏死、正常良性、淋巴细胞和平滑肌在内的 7 种不同的组织成分进行分类。为了验证我们提出的模型,我们在两个公开的结直肠癌组织学数据集上进行了实验。我们展示了我们的方法在 CRCD-1 和 CRCD-2 上的表现分别超过了现有的最先进方法(1.3%AvTP,2%F1)和(7%AvTP,6%F1)。

相似文献

本文引用的文献

1
Skin Cancer Detection: A Review Using Deep Learning Techniques.皮肤癌检测:深度学习技术的综述。
Int J Environ Res Public Health. 2021 May 20;18(10):5479. doi: 10.3390/ijerph18105479.
3
A comprehensive review of deep learning in colon cancer.关于深度学习在结肠癌中的全面综述。
Comput Biol Med. 2020 Nov;126:104003. doi: 10.1016/j.compbiomed.2020.104003. Epub 2020 Sep 17.
7
A guide to deep learning in healthcare.深度学习在医疗保健中的应用指南。
Nat Med. 2019 Jan;25(1):24-29. doi: 10.1038/s41591-018-0316-z. Epub 2019 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验