Electrical and Computer Engineering Department, Khalifa University, 12778, Abu Dhabi, United Arab Emirates.
Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, 33431, USA.
J Digit Imaging. 2023 Aug;36(4):1653-1662. doi: 10.1007/s10278-023-00797-x. Epub 2023 Apr 14.
Tissue phenotyping is a fundamental step in computational pathology for the analysis of tumor micro-environment in whole slide images (WSIs). Automatic tissue phenotyping in whole slide images (WSIs) of colorectal cancer (CRC) assists pathologists in better cancer grading and prognostication. In this paper, we propose a novel algorithm for the identification of distinct tissue components in colon cancer histology images by blending a comprehensive learning system with deep features extraction in the current work. Firstly, we extracted the features from the pre-trained VGG19 network which are then transformed into mapped features space for nodes enhancement generation. Utilizing both mapped features and enhancement nodes, the proposed algorithm classifies seven distinct tissue components including stroma, tumor, complex stroma, necrotic, normal benign, lymphocytes, and smooth muscle. To validate our proposed model, the experiments are performed on two publicly available colorectal cancer histology datasets. We showcase that our approach achieves a remarkable performance boost surpassing existing state-of-the-art methods by (1.3% AvTP, 2% F1) and (7% AvTP, 6% F1) on CRCD-1, and CRCD-2, respectively.
组织表型分析是计算病理学中分析全切片图像(WSI)中肿瘤微环境的基础步骤。在结直肠癌(CRC)的全切片图像(WSI)中进行自动组织表型分析有助于病理学家更好地进行癌症分级和预后判断。在本文中,我们提出了一种新的算法,通过在当前工作中混合综合学习系统和深度特征提取来识别结肠癌组织学图像中的不同组织成分。首先,我们从预训练的 VGG19 网络中提取特征,然后将其转换为映射特征空间,以生成节点增强。利用映射特征和增强节点,所提出的算法可以对包括基质、肿瘤、复杂基质、坏死、正常良性、淋巴细胞和平滑肌在内的 7 种不同的组织成分进行分类。为了验证我们提出的模型,我们在两个公开的结直肠癌组织学数据集上进行了实验。我们展示了我们的方法在 CRCD-1 和 CRCD-2 上的表现分别超过了现有的最先进方法(1.3%AvTP,2%F1)和(7%AvTP,6%F1)。