Suppr超能文献

用于小儿阑尾炎的基于超声的可解释且可干预的机器学习模型。

Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis.

作者信息

Marcinkevičs Ričards, Reis Wolfertstetter Patricia, Klimiene Ugne, Chin-Cheong Kieran, Paschke Alyssia, Zerres Julia, Denzinger Markus, Niederberger David, Wellmann Sven, Ozkan Ece, Knorr Christian, Vogt Julia E

机构信息

Department of Computer Science, ETH Zurich, Universitätstrasse 6, Zürich, 8092, Switzerland.

Department of Pediatric Surgery and Pediatric Orthopedics, Hospital St. Hedwig of the Order of St. John of God, University Children's Hospital Regensburg (KUNO), Steinmetzstrasse 1-3, Regensburg, 93049, Germany; Faculty of Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany.

出版信息

Med Image Anal. 2024 Jan;91:103042. doi: 10.1016/j.media.2023.103042. Epub 2023 Nov 23.

Abstract

Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. Previous decision support systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data and have ignored abdominal ultrasound, despite its noninvasive nature and widespread availability. In this work, we present interpretable machine learning models for predicting the diagnosis, management and severity of suspected appendicitis using ultrasound images. Our approach utilizes concept bottleneck models (CBM) that facilitate interpretation and interaction with high-level concepts understandable to clinicians. Furthermore, we extend CBMs to prediction problems with multiple views and incomplete concept sets. Our models were trained on a dataset comprising 579 pediatric patients with 1709 ultrasound images accompanied by clinical and laboratory data. Results show that our proposed method enables clinicians to utilize a human-understandable and intervenable predictive model without compromising performance or requiring time-consuming image annotation when deployed. For predicting the diagnosis, the extended multiview CBM attained an AUROC of 0.80 and an AUPR of 0.92, performing comparably to similar black-box neural networks trained and tested on the same dataset.

摘要

阑尾炎是小儿腹部手术最常见的原因之一。先前用于阑尾炎的决策支持系统专注于临床、实验室、评分和计算机断层扫描数据,而忽略了腹部超声,尽管其具有无创性且广泛可用。在这项工作中,我们提出了可解释的机器学习模型,用于使用超声图像预测疑似阑尾炎的诊断、治疗和严重程度。我们的方法利用概念瓶颈模型(CBM),便于与临床医生可理解的高级概念进行解释和交互。此外,我们将CBM扩展到具有多个视图和不完整概念集的预测问题。我们的模型在一个包含579名儿科患者的1709张超声图像以及临床和实验室数据的数据集上进行了训练。结果表明,我们提出的方法使临床医生能够使用一个人类可理解且可干预的预测模型,在部署时不会影响性能,也无需耗时的图像标注。对于预测诊断,扩展的多视图CBM的曲线下面积(AUROC)为0.80,精确率-召回率曲线下面积(AUPR)为0.92,与在同一数据集上训练和测试的类似黑箱神经网络表现相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验