Suppr超能文献

利用机器学习预测小儿阑尾炎的诊断、治疗及严重程度。

Using Machine Learning to Predict the Diagnosis, Management and Severity of Pediatric Appendicitis.

作者信息

Marcinkevics Ricards, Reis Wolfertstetter Patricia, Wellmann Sven, Knorr Christian, Vogt Julia E

机构信息

Department of Computer Science, ETH Zurich, Zurich, Switzerland.

Department of Pediatric Surgery and Pediatric Orthopedics, Hospital St. Hedwig of the Order of St. John of God, University Children's Hospital Regensburg (KUNO), Regensburg, Germany.

出版信息

Front Pediatr. 2021 Apr 29;9:662183. doi: 10.3389/fped.2021.662183. eCollection 2021.

Abstract

Given the absence of consolidated and standardized international guidelines for managing pediatric appendicitis and the few strictly data-driven studies in this specific, we investigated the use of machine learning (ML) classifiers for predicting the diagnosis, management and severity of appendicitis in children. Predictive models were developed and validated on a dataset acquired from 430 children and adolescents aged 0-18 years, based on a range of information encompassing history, clinical examination, laboratory parameters, and abdominal ultrasonography. Logistic regression, random forests, and gradient boosting machines were used for predicting the three target variables. A random forest classifier achieved areas under the precision-recall curve of 0.94, 0.92, and 0.70, respectively, for the diagnosis, management, and severity of appendicitis. We identified smaller subsets of 6, 17, and 18 predictors for each of targets that sufficed to achieve the same performance as the model based on the full set of 38 variables. We used these findings to develop the user-friendly online Appendicitis Prediction Tool for children with suspected appendicitis. This pilot study considered the most extensive set of predictor and target variables to date and is the first to simultaneously predict all three targets in children: diagnosis, management, and severity. Moreover, this study presents the first ML model for appendicitis that was deployed as an open access easy-to-use online tool. ML algorithms help to overcome the diagnostic and management challenges posed by appendicitis in children and pave the way toward a more personalized approach to medical decision-making. Further validation studies are needed to develop a finished clinical decision support system.

摘要

鉴于缺乏用于管理小儿阑尾炎的统一和标准化国际指南,且针对这一特定领域的严格数据驱动研究较少,我们研究了使用机器学习(ML)分类器来预测儿童阑尾炎的诊断、治疗和严重程度。基于一系列包括病史、临床检查、实验室参数和腹部超声检查的信息,在一个从430名0至18岁儿童和青少年获取的数据集上开发并验证了预测模型。使用逻辑回归、随机森林和梯度提升机来预测三个目标变量。对于阑尾炎的诊断、治疗和严重程度,随机森林分类器在精确召回曲线下的面积分别为0.94、0.92和0.70。我们为每个目标确定了6、17和18个预测因子的较小子集,这些子集足以实现与基于38个变量的完整模型相同的性能。我们利用这些发现为疑似阑尾炎儿童开发了用户友好的在线阑尾炎预测工具。这项初步研究考虑了迄今为止最广泛的预测因子和目标变量集,并且是首次同时预测儿童的所有三个目标:诊断、治疗和严重程度。此外,本研究展示了首个作为开放获取的易于使用的在线工具部署的阑尾炎ML模型。ML算法有助于克服小儿阑尾炎带来的诊断和管理挑战,并为更个性化的医疗决策方法铺平道路。需要进一步的验证研究来开发一个完善的临床决策支持系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9178/8116489/b05c38822ad0/fped-09-662183-g0001.jpg

相似文献

1
Using Machine Learning to Predict the Diagnosis, Management and Severity of Pediatric Appendicitis.
Front Pediatr. 2021 Apr 29;9:662183. doi: 10.3389/fped.2021.662183. eCollection 2021.
2
Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis.
Med Image Anal. 2024 Jan;91:103042. doi: 10.1016/j.media.2023.103042. Epub 2023 Nov 23.
3
Accurate diagnosis of acute appendicitis in the emergency department: an artificial intelligence-based approach.
Intern Emerg Med. 2024 Nov;19(8):2347-2357. doi: 10.1007/s11739-024-03738-w. Epub 2024 Aug 21.
4
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
Artif Intell Med. 2019 Jul;98:109-134. doi: 10.1016/j.artmed.2019.07.007. Epub 2019 Jul 26.
5
A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
BMC Med Inform Decis Mak. 2019 Nov 6;19(1):211. doi: 10.1186/s12911-019-0918-5.
6
Light gradient boost tree classifier predictions on appendicitis with periodontal disease from biochemical and clinical parameters.
Front Oral Health. 2024 Sep 13;5:1462873. doi: 10.3389/froh.2024.1462873. eCollection 2024.
7
A hospital wide predictive model for unplanned readmission using hierarchical ICD data.
Comput Methods Programs Biomed. 2019 May;173:177-183. doi: 10.1016/j.cmpb.2019.02.007. Epub 2019 Feb 13.
8
A Machine Learning-Based Model to Predict Acute Traumatic Coagulopathy in Trauma Patients Upon Emergency Hospitalization.
Clin Appl Thromb Hemost. 2020 Jan-Dec;26:1076029619897827. doi: 10.1177/1076029619897827.
9
Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation.
PLoS Med. 2018 Nov 13;15(11):e1002693. doi: 10.1371/journal.pmed.1002693. eCollection 2018 Nov.
10
A diagnostic testing for people with appendicitis using machine learning techniques.
Multimed Tools Appl. 2022;81(5):7011-7023. doi: 10.1007/s11042-022-11939-8. Epub 2022 Jan 24.

引用本文的文献

2
Machine Learning and Feature Selection in Pediatric Appendicitis.
Tomography. 2025 Aug 13;11(8):90. doi: 10.3390/tomography11080090.
4
Pediatrics 4.0: the Transformative Impacts of the Latest Industrial Revolution on Pediatrics.
Health Care Anal. 2025 Jul 21. doi: 10.1007/s10728-025-00536-z.
7
A Systematic Integration of Artificial Intelligence Models in Appendicitis Management: A Comprehensive Review.
Diagnostics (Basel). 2025 Mar 28;15(7):866. doi: 10.3390/diagnostics15070866.
8
Artificial Intelligence in Clinics: Enhancing Cardiology Practice.
JMA J. 2025 Jan 15;8(1):131-140. doi: 10.31662/jmaj.2024-0190. Epub 2024 Dec 24.
9
LesionScanNet: dual-path convolutional neural network for acute appendicitis diagnosis.
Health Inf Sci Syst. 2024 Dec 7;13(1):3. doi: 10.1007/s13755-024-00321-7. eCollection 2025 Dec.

本文引用的文献

3
The Use of Machine Learning Approaches for the Diagnosis of Acute Appendicitis.
Emerg Med Int. 2020 Apr 25;2020:7306435. doi: 10.1155/2020/7306435. eCollection 2020.
4
A novel and simple machine learning algorithm for preoperative diagnosis of acute appendicitis in children.
Pediatr Surg Int. 2020 Jun;36(6):735-742. doi: 10.1007/s00383-020-04655-7. Epub 2020 Apr 20.
5
Appendicitis risk prediction models in children presenting with right iliac fossa pain (RIFT study): a prospective, multicentre validation study.
Lancet Child Adolesc Health. 2020 Apr;4(4):271-280. doi: 10.1016/S2352-4642(20)30006-7. Epub 2020 Feb 13.
7
Pharmacometrics and Machine Learning Partner to Advance Clinical Data Analysis.
Clin Pharmacol Ther. 2020 Apr;107(4):926-933. doi: 10.1002/cpt.1774. Epub 2020 Feb 17.
8
Diagnosis and classification of pediatric acute appendicitis by artificial intelligence methods: An investigator-independent approach.
PLoS One. 2019 Sep 25;14(9):e0222030. doi: 10.1371/journal.pone.0222030. eCollection 2019.
9
Machine Learning in Medicine.
N Engl J Med. 2019 Apr 4;380(14):1347-1358. doi: 10.1056/NEJMra1814259.
10
Enhanced early prediction of clinically relevant neonatal hyperbilirubinemia with machine learning.
Pediatr Res. 2019 Jul;86(1):122-127. doi: 10.1038/s41390-019-0384-x. Epub 2019 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验