Suppr超能文献

通过机器学习算法鉴定新型潜在的 EGF 抑制剂候选物。

Identification of new potential candidates to inhibit EGF via machine learning algorithm.

机构信息

Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran.

Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.

出版信息

Eur J Pharmacol. 2024 Jan 15;963:176176. doi: 10.1016/j.ejphar.2023.176176. Epub 2023 Nov 23.

Abstract

One of the cost-effective alternative methods to find new inhibitors has been the repositioning approach of existing drugs. The advantage of computational drug repositioning method is saving time and cost to remove the pre-clinical step and accelerate the drug discovery process. Hence, an ensemble computational-experimental approach, consisting of three steps, a machine learning model, simulation of drug-target interaction and experimental characterization, was developed. The machine learning type used here was a different tree classification method, which is one of the best randomize machine learning model to identify potential inhibitors from weak inhibitors. This model was trained more than one-hundred times, and forty top trained models were extracted for the drug repositioning step. The machine learning step aimed to discover the approved drugs with the highest possible success rate in the experimental step. Therefore, among all the identified molecules with more than 0.9 probability in more than 70% of the models, nine compounds, were selected. Besides, out of the nine chosen drugs, seven compounds have been confirmed to inhibit EGF in the published articles since 2019. Hence, two identified compounds, in addition to gefitinib, as a positive control, five weak-inhibitors and one neutral, were considered via molecular docking study. Finally, the eight proposed drugs, including gefitinib, were investigated using MTT assay and In-Cell ELISA to characterize the drugs' effect on A431 cell growth and EGF-signaling. From our experiments, we could conclude that salicylic acid and piperazine could play an EGF-inhibitor role like gefitinib.

摘要

从已上市药物中寻找新抑制剂的一种具有成本效益的替代方法是再定位方法。计算药物再定位方法的优点是节省时间和成本,省去临床前步骤并加速药物发现过程。因此,开发了一种包含三个步骤的基于计算和实验的综合方法,即机器学习模型、药物-靶标相互作用的模拟和实验表征。这里使用的机器学习类型是一种不同的树分类方法,这是一种最好的随机机器学习模型,可用于从弱抑制剂中识别潜在的抑制剂。该模型经过了一百多次训练,提取了四十个最佳训练模型用于药物重定位步骤。机器学习步骤旨在发现实验步骤中成功率最高的已批准药物。因此,在所识别的分子中,超过 70%的模型中超过 0.9 的概率的所有分子中,有 9 种化合物被选中。此外,在所选择的 9 种药物中,有 7 种化合物自 2019 年以来在已发表的文章中被证实可抑制 EGF。因此,通过分子对接研究考虑了两种已识别的化合物(除吉非替尼外),作为阳性对照,五种弱抑制剂和一种中性化合物。最后,使用 MTT 测定法和细胞内 ELISA 法研究了包括吉非替尼在内的 8 种拟议药物,以表征这些药物对 A431 细胞生长和 EGF 信号的影响。通过我们的实验,我们可以得出结论,水杨酸和哌嗪可以像吉非替尼一样发挥 EGF 抑制剂的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验