Suppr超能文献

临床蛋白质组学中的多模态学习:利用化学信息增强抗菌药物耐药性预测模型

Multimodal learning in clinical proteomics: enhancing antimicrobial resistance prediction models with chemical information.

机构信息

Department of Empirical Inference, Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, Tübingen 72076, Germany.

BIO3-GIGA-R Medical Genomics, University of Liège, Avenue de l'Hôpital 11, Liège 4000, Belgium.

出版信息

Bioinformatics. 2023 Dec 1;39(12). doi: 10.1093/bioinformatics/btad717.

Abstract

MOTIVATION

Large-scale clinical proteomics datasets of infectious pathogens, combined with antimicrobial resistance outcomes, have recently opened the door for machine learning models which aim to improve clinical treatment by predicting resistance early. However, existing prediction frameworks typically train a separate model for each antimicrobial and species in order to predict a pathogen's resistance outcome, resulting in missed opportunities for chemical knowledge transfer and generalizability.

RESULTS

We demonstrate the effectiveness of multimodal learning over proteomic and chemical features by exploring two clinically relevant tasks for our proposed deep learning models: drug recommendation and generalized resistance prediction. By adopting this multi-view representation of the pathogenic samples and leveraging the scale of the available datasets, our models outperformed the previous single-drug and single-species predictive models by statistically significant margins. We extensively validated the multi-drug setting, highlighting the challenges in generalizing beyond the training data distribution, and quantitatively demonstrate how suitable representations of antimicrobial drugs constitute a crucial tool in the development of clinically relevant predictive models.

AVAILABILITY AND IMPLEMENTATION

The code used to produce the results presented in this article is available at https://github.com/BorgwardtLab/MultimodalAMR.

摘要

动机

最近,大规模的传染病原体临床蛋白质组学数据集与抗菌药物耐药性结果相结合,为机器学习模型打开了大门,这些模型旨在通过早期预测耐药性来改善临床治疗。然而,现有的预测框架通常为每种抗菌药物和每个物种训练一个单独的模型,以预测病原体的耐药性结果,从而错失了化学知识转移和通用性的机会。

结果

我们通过探索我们提出的深度学习模型的两个与临床相关的任务——药物推荐和广义耐药性预测,展示了多模态学习在蛋白质组学和化学特征上的有效性。通过采用病原样本的这种多视图表示,并利用可用数据集的规模,我们的模型在统计学上显著优于以前的单药物和单物种预测模型。我们广泛验证了多药物环境,强调了超越训练数据分布进行泛化的挑战,并定量证明了抗菌药物的合适表示如何构成开发临床相关预测模型的重要工具。

可用性和实现

本文中呈现的结果所使用的代码可在 https://github.com/BorgwardtLab/MultimodalAMR 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33a7/10724849/25bd2c29dac8/btad717f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验