Suppr超能文献

MUFFIN:用于药物-药物相互作用预测的多尺度特征融合

MUFFIN: multi-scale feature fusion for drug-drug interaction prediction.

作者信息

Chen Yujie, Ma Tengfei, Yang Xixi, Wang Jianmin, Song Bosheng, Zeng Xiangxiang

机构信息

School of Computer Science and Engineering, Hunan University, Changsha 410012, China.

出版信息

Bioinformatics. 2021 Sep 9;37(17):2651-2658. doi: 10.1093/bioinformatics/btab169.

Abstract

MOTIVATION

Adverse drug-drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure.

RESULTS

Accordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines.

AVAILABILITY AND IMPLEMENTATION

The source code and data are available at https://github.com/xzenglab/MUFFIN.

摘要

动机

药物不良相互作用(DDIs)对药物研究至关重要,并且主要导致发病率和死亡率。因此,识别潜在的药物不良相互作用对医生、患者和社会都至关重要。现有的传统机器学习模型严重依赖手工制作的特征且缺乏泛化能力。最近,能够从分子图或药物相关网络自动学习药物特征的深度学习方法提高了计算模型预测未知药物不良相互作用的能力。然而,先前的工作使用了大量标记数据,仅考虑了药物的结构或序列信息,而没有考虑药物与其他生物医学对象(如基因、疾病和通路)之间的关系或拓扑信息,或者考虑了知识图谱(KG)但没有考虑来自药物分子结构的信息。

结果

因此,为了有效地探索药物分子结构和知识图谱中药物语义信息对药物不良相互作用预测的联合效应,我们提出了一种名为MUFFIN的多尺度特征融合深度学习模型。MUFFIN可以基于药物自身结构信息和具有丰富生物医学信息的知识图谱联合学习药物表示。在MUFFIN中,我们设计了一种双层交叉策略,包括交叉和标量级组件,以很好地融合多模态特征。MUFFIN可以通过交叉从大规模知识图谱和药物分子图中学到的特征来缓解有限标记数据对深度学习模型的限制。我们在三个数据集和三个不同任务上评估了我们的方法,包括二分类、多分类和多标签药物不良相互作用预测任务。结果表明,MUFFIN优于其他最先进的基线方法。

可用性和实现

源代码和数据可在https://github.com/xzenglab/MUFFIN上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验