Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia.
Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
mSystems. 2024 Sep 17;9(9):e0078924. doi: 10.1128/msystems.00789-24. Epub 2024 Aug 16.
Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used in clinical microbiology laboratories for bacterial identification but its use for detection of antimicrobial resistance (AMR) remains limited. Here, we used MALDI-TOF MS with artificial intelligence (AI) approaches to successfully predict AMR in , a priority pathogen with complex AMR mechanisms. The highest performance was achieved for modern β-lactam/β-lactamase inhibitor drugs, namely, ceftazidime/avibactam and ceftolozane/tazobactam. For these drugs, the model demonstrated area under the receiver operating characteristic curve (AUROC) of 0.869 and 0.856, specificity of 0.925 and 0.897, and sensitivity of 0.731 and 0.714, respectively. As part of this work, we developed dynamic binning, a feature engineering technique that effectively reduces the high-dimensional feature set and has wide-ranging applicability to MALDI-TOF MS data. Compared to conventional feature engineering approaches, the dynamic binning method yielded highest performance in 7 of 10 antimicrobials. Moreover, we showcased the efficacy of transfer learning in enhancing the AUROC performance for 8 of 11 antimicrobials. By assessing the contribution of features to the model's prediction, we identified proteins that may contribute to AMR mechanisms. Our findings demonstrate the potential of combining AI with MALDI-TOF MS as a rapid AMR diagnostic tool for .IMPORTANCE is a key bacterial pathogen that causes significant global morbidity and mortality. Antimicrobial resistance (AMR) emerges rapidly in and is driven by complex mechanisms. Drug-resistant is a major challenge in clinical settings due to limited treatment options. Early detection of AMR can guide antibiotic choices, improve patient outcomes, and avoid unnecessary antibiotic use. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used for rapid species identification in clinical microbiology. In this study, we repurposed mass spectra generated by MALDI-TOF and used them as inputs for artificial intelligence approaches to successfully predict AMR in for multiple key antibiotic classes. This work represents an important advance toward using MALDI-TOF as a rapid AMR diagnostic for in clinical settings.
基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)广泛应用于临床微生物学实验室的细菌鉴定,但在检测抗菌药物耐药性(AMR)方面的应用仍然有限。在这里,我们使用 MALDI-TOF MS 和人工智能(AI)方法成功预测了具有复杂 AMR 机制的优先病原体的 AMR。对于现代β-内酰胺/β-内酰胺酶抑制剂药物,即头孢他啶/阿维巴坦和头孢洛扎/他唑巴坦,取得了最高的性能。对于这些药物,该模型的接收者操作特征曲线(AUROC)分别为 0.869 和 0.856,特异性为 0.925 和 0.897,灵敏度为 0.731 和 0.714。作为这项工作的一部分,我们开发了动态分箱,这是一种特征工程技术,可以有效地减少高维特征集,并广泛适用于 MALDI-TOF MS 数据。与传统的特征工程方法相比,动态分箱方法在 10 种抗菌药物中的 7 种中表现出最高的性能。此外,我们展示了迁移学习在提高 11 种抗菌药物中 8 种的 AUROC 性能方面的效果。通过评估特征对模型预测的贡献,我们确定了可能有助于 AMR 机制的蛋白质。我们的研究结果表明,将人工智能与 MALDI-TOF MS 相结合作为一种快速 AMR 诊断工具,用于 具有潜力。
是一种关键的细菌病原体,会导致全球发病率和死亡率显著增加。在 中,抗菌药物耐药性(AMR)迅速出现,并且由复杂的机制驱动。由于治疗选择有限,耐药 是临床环境中的主要挑战。早期检测 AMR 可以指导抗生素选择,改善患者预后,并避免不必要的抗生素使用。基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)广泛用于临床微生物学中的快速物种鉴定。在这项研究中,我们重新利用 MALDI-TOF 生成的质谱,并将其用作人工智能方法的输入,成功预测了多种关键抗生素类别中 中的 AMR。这项工作代表了朝着在临床环境中使用 MALDI-TOF 作为快速 AMR 诊断 的重要进展。