Suppr超能文献

利用机器学习模型,通过可解释的污水时间序列特征优化校园范围内的 COVID-19 测试通知。

Optimizing campus-wide COVID-19 test notifications with interpretable wastewater time-series features using machine learning models.

机构信息

Department of Biostatistics, University of Florida, Gainesville, FL, 32608, USA.

Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA.

出版信息

Sci Rep. 2023 Nov 24;13(1):20670. doi: 10.1038/s41598-023-47859-2.

Abstract

During the COVID-19 pandemic, wastewater surveillance of the SARS CoV-2 virus has been demonstrated to be effective for population surveillance at the county level down to the building level. At the University of California, San Diego, daily high-resolution wastewater surveillance conducted at the building level is being used to identify potential undiagnosed infections and trigger notification of residents and responsive testing, but the optimal determinants for notifications are unknown. To fill this gap, we propose a pipeline for data processing and identifying features of a series of wastewater test results that can predict the presence of COVID-19 in residences associated with the test sites. Using time series of wastewater results and individual testing results during periods of routine asymptomatic testing among UCSD students from 11/2020 to 11/2021, we develop hierarchical classification/decision tree models to select the most informative wastewater features (patterns of results) which predict individual infections. We find that the best predictor of positive individual level tests in residence buildings is whether or not the wastewater samples were positive in at least 3 of the past 7 days. We also demonstrate that the tree models outperform a wide range of other statistical and machine models in predicting the individual COVID-19 infections while preserving interpretability. Results of this study have been used to refine campus-wide guidelines and email notification systems to alert residents of potential infections.

摘要

在 COVID-19 大流行期间,已经证明对 SARS-CoV-2 病毒的废水监测对于县级以下的人群监测是有效的,甚至可以精确到建筑物层面。在加州大学圣地亚哥分校,每天在建筑物层面进行的高分辨率废水监测,用于识别潜在的未确诊感染,并触发对居民的通知和响应性测试,但最佳通知决定因素尚不清楚。为了填补这一空白,我们提出了一个数据处理管道,用于识别一系列废水测试结果的特征,这些特征可以预测与测试地点相关的住宅中 COVID-19 的存在。使用时间序列的废水结果和在 2020 年 11 月至 2021 年 11 月期间 UCSD 学生常规无症状测试期间的个体测试结果,我们开发了分层分类/决策树模型,以选择最具信息量的废水特征(结果模式),从而预测个体感染。我们发现,预测住宅建筑中个体阳性测试的最佳指标是过去 7 天内至少有 3 天的废水样本是否呈阳性。我们还证明,树模型在预测个体 COVID-19 感染方面优于广泛的其他统计和机器学习模型,同时保持可解释性。这项研究的结果已被用于完善全校园范围的指南和电子邮件通知系统,以提醒居民潜在的感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd69/10673837/ddcbb909568b/41598_2023_47859_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验