Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia.
Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia.
Biomolecules. 2023 Nov 17;13(11):1660. doi: 10.3390/biom13111660.
Ribosomal frameshifting (RFS) at the slippery site of SARS-CoV-2 RNA is essential for the biosynthesis of the viral replication machinery. It requires the formation of a pseudoknot (PK) structure near the slippery site and can be inhibited by PK-disrupting oligonucleotide-based antivirals. We obtained and compared three types of such antiviral candidates, namely locked nucleic acids (LNA), LNA-DNA gapmers, and G-clamp-containing phosphorothioates (CPSs) complementary to PK stems. Using optical and electrophoretic methods, we showed that stem 2-targeting oligonucleotide analogs induced PK unfolding at nanomolar concentrations, and this effect was particularly pronounced in the case of LNA. For the leading PK-unfolding LNA and CPS oligonucleotide analogs, we also demonstrated dose-dependent RSF inhibition in dual luciferase assays (DLAs). Finally, we showed that the leading oligonucleotide analogs reduced SARS-CoV-2 replication at subtoxic concentrations in the nanomolar range in two human cell lines. Our findings highlight the promise of PK targeting, illustrate the advantages and limitations of various types of DNA modifications and may promote the future development of oligonucleotide-based antivirals.
冠状病毒 2 型 RNA 滑动位点的核糖体移码(RFS)对于病毒复制机制的生物合成至关重要。它需要在滑动位点附近形成假结(PK)结构,并且可以被 PK 破坏寡核苷酸抗病毒药物抑制。我们获得并比较了三种类型的抗病毒候选物,即锁核酸(LNA)、LNA-DNA 间隙物和含有 G 夹的硫代磷酸酯(CPS),它们与 PK 茎互补。使用光学和电泳方法,我们表明靶向茎 2 的寡核苷酸类似物在纳摩尔浓度下诱导 PK 解折叠,并且 LNA 的效果更为明显。对于领先的 PK 解折叠 LNA 和 CPS 寡核苷酸类似物,我们还在双荧光素酶测定(DLAs)中证明了剂量依赖性 RFS 抑制。最后,我们表明,在两种人类细胞系中,亚毒性浓度的纳米范围内的寡核苷酸类似物可降低 SARS-CoV-2 的复制。我们的研究结果突显了靶向 PK 的前景,说明了各种类型的 DNA 修饰的优缺点,并可能促进基于寡核苷酸的抗病毒药物的未来发展。