文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

斜向腰椎椎间融合术中单侧、双侧及外侧椎弓根螺钉植入的比较生物力学分析:一项有限元研究

Comparative Biomechanical Analysis of Unilateral, Bilateral, and Lateral Pedicle Screw Implantation in Oblique Lumbar Interbody Fusion: A Finite Element Study.

作者信息

Pan Chien-Chou, Lee Cheng-Hung, Chen Kun-Hui, Yen Yu-Chun, Su Kuo-Chih

机构信息

Department of Orthopedics, Taichung Veterans General Hospital, Taichung 407, Taiwan.

Department of Rehabilitation Science, Jenteh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.

出版信息

Bioengineering (Basel). 2023 Oct 24;10(11):1238. doi: 10.3390/bioengineering10111238.


DOI:10.3390/bioengineering10111238
PMID:38002362
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10669710/
Abstract

Oblique lumbar interbody fusion (OLIF) can be combined with different screw instrumentations. The standard screw instrumentation is bilateral pedicle screw fixation (BPSF). However, the operation is time consuming because a lateral recumbent position must be adopted for OLIF during surgery before a prone position is adopted for BPSF. This study aimed to employ a finite element analysis to investigate the biomechanical effects of OLIF combined with BPSF, unilateral pedicle screw fixation (UPSF), or lateral pedicle screw fixation (LPSF). In this study, three lumbar vertebra finite element models for OLIF surgery with three different fixation methods were developed. The finite element models were assigned six loading conditions (flexion, extension, right lateral bending, left lateral bending, right axial rotation, and left axial rotation), and the total deformation and von Mises stress distribution of the finite element models were observed. The study results showed unremarkable differences in total deformation among different groups (the maximum difference range is approximately 0.6248% to 1.3227%), and that flexion has larger total deformation (5.3604 mm to 5.4011 mm). The groups exhibited different endplate stress because of different movements, but these differences were not large (the maximum difference range between each group is approximately 0.455% to 5.0102%). Using UPSF fixation may lead to higher cage stress (411.08 MPa); however, the stress produced on the endplate was comparable to that in the other two groups. Therefore, the length of surgery can be shortened when unilateral back screws are used for UPSF. In addition, the total deformation and endplate stress of UPSF did not differ much from that of BPSF. Hence, combining OLIF with UPSF can save time and enhance stability, which is comparable to a standard BPSF surgery; thus, this method can be considered by spine surgeons.

摘要

斜外侧腰椎椎间融合术(OLIF)可与不同的螺钉内固定方式相结合。标准的螺钉内固定方式是双侧椎弓根螺钉固定(BPSF)。然而,该手术耗时较长,因为在进行OLIF手术时必须采用侧卧位,之后再转为俯卧位进行BPSF。本研究旨在通过有限元分析来探究OLIF联合BPSF、单侧椎弓根螺钉固定(UPSF)或外侧椎弓根螺钉固定(LPSF)的生物力学效应。在本研究中,建立了三种采用不同固定方法的OLIF手术的腰椎有限元模型。对这些有限元模型施加六种载荷工况(前屈、后伸、右侧弯、左侧弯、右侧轴向旋转和左侧轴向旋转),并观察有限元模型的总变形和冯·米塞斯应力分布。研究结果显示,不同组之间的总变形差异不显著(最大差异范围约为0.6248%至1.3227%),且前屈时的总变形较大(5.3604毫米至5.4011毫米)。由于运动方式不同,各组终板应力有所差异,但这些差异不大(每组之间的最大差异范围约为0.455%至5.0102%)。采用UPSF固定可能会导致椎间融合器应力较高(411.08兆帕);然而,终板上产生的应力与其他两组相当。因此,采用UPSF使用单侧后路螺钉时可缩短手术时间。此外,UPSF的总变形和终板应力与BPSF相比差异不大。因此,OLIF联合UPSF可节省时间并增强稳定性,与标准的BPSF手术相当;脊柱外科医生可考虑采用这种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/563940be254d/bioengineering-10-01238-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/5d61752e4284/bioengineering-10-01238-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/02191f6be5e7/bioengineering-10-01238-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/d8ea01225bca/bioengineering-10-01238-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/cfba11f2ba36/bioengineering-10-01238-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/a7f2589b2455/bioengineering-10-01238-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/5864c18fab4c/bioengineering-10-01238-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/272a99f6e695/bioengineering-10-01238-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/5d1b0151a84f/bioengineering-10-01238-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/5d21176400dd/bioengineering-10-01238-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/827a109c7ab3/bioengineering-10-01238-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/66711e35c60a/bioengineering-10-01238-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/c0ab464c8c99/bioengineering-10-01238-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/563940be254d/bioengineering-10-01238-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/5d61752e4284/bioengineering-10-01238-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/02191f6be5e7/bioengineering-10-01238-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/d8ea01225bca/bioengineering-10-01238-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/cfba11f2ba36/bioengineering-10-01238-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/a7f2589b2455/bioengineering-10-01238-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/5864c18fab4c/bioengineering-10-01238-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/272a99f6e695/bioengineering-10-01238-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/5d1b0151a84f/bioengineering-10-01238-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/5d21176400dd/bioengineering-10-01238-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/827a109c7ab3/bioengineering-10-01238-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/66711e35c60a/bioengineering-10-01238-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/c0ab464c8c99/bioengineering-10-01238-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8691/10669710/563940be254d/bioengineering-10-01238-g013.jpg

相似文献

[1]
Comparative Biomechanical Analysis of Unilateral, Bilateral, and Lateral Pedicle Screw Implantation in Oblique Lumbar Interbody Fusion: A Finite Element Study.

Bioengineering (Basel). 2023-10-24

[2]
Biomechanical Evaluation of Transforaminal Lumbar Interbody Fusion with Coflex-F and Pedicle Screw Fixation: Finite Element Analysis of Static and Vibration Conditions.

Orthop Surg. 2022-9

[3]
Biomechanical Comparison of Stand-Alone and Bilateral Pedicle Screw Fixation for Oblique Lumbar Interbody Fusion Surgery-A Finite Element Analysis.

World Neurosurg. 2020-9

[4]
Effects of osteoporosis on the biomechanics of various supplemental fixations co-applied with oblique lumbar interbody fusion (OLIF): a finite element analysis.

BMC Musculoskelet Disord. 2022-8-19

[5]
Biomechanical study of oblique lumbar interbody fusion (OLIF) augmented with different types of instrumentation: a finite element analysis.

J Orthop Surg Res. 2022-5-14

[6]
Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery--a finite element analysis.

BMC Musculoskelet Disord. 2012-5-16

[7]
Biomechanical changes of oblique lumbar interbody fusion with different fixation techniques in degenerative spondylolisthesis lumbar spine: a finite element analysis.

BMC Musculoskelet Disord. 2024-8-24

[8]
Oblique lateral interbody fusion combined with unilateral versus bilateral posterior fixation in patients with osteoporosis.

J Orthop Surg Res. 2023-10-16

[9]
Computational comparison of anterior lumbar interbody fusion and oblique lumbar interbody fusion with various supplementary fixation systems: a finite element analysis.

J Orthop Surg Res. 2023-1-2

[10]
Design and Biomechanical Evaluation of a Bidirectional Expandable Cage for Oblique Lateral Interbody Fusion.

World Neurosurg. 2023-12

引用本文的文献

[1]
Finite element analysis of pedicle screw fixation biomechanics and adjacent segment degeneration in varied bone conditions.

Sci Rep. 2025-5-30

[2]
Engagement and Stress Concentration Evaluation of a Novel Two-Part Compression Screw: A Preliminary Finite Element Analysis.

Bioengineering (Basel). 2025-5-1

[3]
Biomechanical Comparison of a Novel Facet Joint Fusion Fixation Device With Conventional Pedicle Screw Fixation Device: A Finite Element Analysis.

Orthop Surg. 2025-4

[4]
Advancements in Biomedical and Bioengineering Technologies in Sports Monitoring and Healthcare.

Bioengineering (Basel). 2024-8-12

[5]
Biomechanical Effects of Multi-segment Fixation on Lumbar Spine and Sacroiliac Joints: A Finite Element Analysis.

Orthop Surg. 2024-10

[6]
Dislodgment Effects of Different Cage Arrangements in Posterior Lumbar Interbody Fusion: A Finite Element Study.

Bioengineering (Basel). 2024-5-31

[7]
Comparative Biomechanical Stability of the Fixation of Different Miniplates in Restorative Laminoplasty after Laminectomy: A Finite Element Study.

Bioengineering (Basel). 2024-5-20

本文引用的文献

[1]
Biomechanical study of oblique lumbar interbody fusion (OLIF) augmented with different types of instrumentation: a finite element analysis.

J Orthop Surg Res. 2022-5-14

[2]
Oblique lateral interbody fusion combined with different internal fixations for the treatment of degenerative lumbar spine disease: a finite element analysis.

BMC Musculoskelet Disord. 2022-3-4

[3]
Single position lumbar fusion: a systematic review and meta-analysis.

Spine J. 2022-3

[4]
Robotics in Spine Surgery: A Technical Overview and Review of Key Concepts.

Front Surg. 2021-2-23

[5]
Does oblique lumbar interbody fusion promote adjacent degeneration in degenerative disc disease: A finite element analysis.

Comput Biol Med. 2021-1

[6]
An In Vitro Biomechanical Evaluation of a Lateral Lumbar Interbody Fusion Device With Integrated Lateral Modular Plate Fixation.

Global Spine J. 2021-4

[7]
Stability Evaluation of Oblique Lumbar Interbody Fusion Constructs with Various Fixation Options: A Finite Element Analysis Based on Three-Dimensional Scanning Models.

World Neurosurg. 2020-3-7

[8]
Is unilateral pedicle screw fixation superior than bilateral pedicle screw fixation for lumbar degenerative diseases: a meta-analysis.

J Orthop Surg Res. 2018-11-22

[9]
Unilateral versus Bilateral Pedicle Screw Fixation Combined with Transforaminal Lumbar Interbody Fusion for the Treatment of Low Lumbar Degenerative Disc Diseases: Analysis of Clinical and Radiographic Results.

World Neurosurg. 2018-7

[10]
Effect of Graded Facetectomy on Lumbar Biomechanics.

J Healthc Eng. 2017-2-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索