文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于激光十字准线模拟器的混合现实导航系统的新型配准方法:技术说明。

A Novel Registration Method for a Mixed Reality Navigation System Based on a Laser Crosshair Simulator: A Technical Note.

作者信息

Qi Ziyu, Bopp Miriam H A, Nimsky Christopher, Chen Xiaolei, Xu Xinghua, Wang Qun, Gan Zhichao, Zhang Shiyu, Wang Jingyue, Jin Haitao, Zhang Jiashu

机构信息

Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.

Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany.

出版信息

Bioengineering (Basel). 2023 Nov 7;10(11):1290. doi: 10.3390/bioengineering10111290.


DOI:10.3390/bioengineering10111290
PMID:38002414
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10669875/
Abstract

Mixed Reality Navigation (MRN) is pivotal in augmented reality-assisted intelligent neurosurgical interventions. However, existing MRN registration methods face challenges in concurrently achieving low user dependency, high accuracy, and clinical applicability. This study proposes and evaluates a novel registration method based on a laser crosshair simulator, evaluating its feasibility and accuracy. A novel registration method employing a laser crosshair simulator was introduced, designed to replicate the scanner frame's position on the patient. The system autonomously calculates the transformation, mapping coordinates from the tracking space to the reference image space. A mathematical model and workflow for registration were designed, and a Universal Windows Platform (UWP) application was developed on HoloLens-2. Finally, a head phantom was used to measure the system's target registration error (TRE). The proposed method was successfully implemented, obviating the need for user interactions with virtual objects during the registration process. Regarding accuracy, the average deviation was 3.7 ± 1.7 mm. This method shows encouraging results in efficiency and intuitiveness and marks a valuable advancement in low-cost, easy-to-use MRN systems. The potential for enhancing accuracy and adaptability in intervention procedures positions this approach as promising for improving surgical outcomes.

摘要

混合现实导航(MRN)在增强现实辅助的智能神经外科手术干预中起着关键作用。然而,现有的MRN配准方法在同时实现低用户依赖性、高精度和临床适用性方面面临挑战。本研究提出并评估了一种基于激光十字准线模拟器的新型配准方法,评估其可行性和准确性。介绍了一种采用激光十字准线模拟器的新型配准方法,旨在将扫描仪框架的位置复制到患者身上。该系统自主计算变换,将坐标从跟踪空间映射到参考图像空间。设计了配准的数学模型和工作流程,并在HoloLens-2上开发了通用Windows平台(UWP)应用程序。最后,使用头部模型测量系统的目标配准误差(TRE)。所提出的方法成功实施,无需用户在配准过程中与虚拟物体进行交互。在准确性方面,平均偏差为3.7±1.7毫米。该方法在效率和直观性方面显示出令人鼓舞的结果,标志着低成本、易于使用的MRN系统取得了有价值的进展。在干预程序中提高准确性和适应性的潜力使这种方法有望改善手术结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/79d1506af502/bioengineering-10-01290-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/679a3f6d38a3/bioengineering-10-01290-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/94f6e6cc5f54/bioengineering-10-01290-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/65e3609cae20/bioengineering-10-01290-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/ae551afe6e2a/bioengineering-10-01290-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/95f52cfdc67e/bioengineering-10-01290-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/d9bc9b7d62e5/bioengineering-10-01290-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/91bff2093e25/bioengineering-10-01290-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/5dad8f5f243b/bioengineering-10-01290-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/79d1506af502/bioengineering-10-01290-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/679a3f6d38a3/bioengineering-10-01290-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/94f6e6cc5f54/bioengineering-10-01290-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/65e3609cae20/bioengineering-10-01290-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/ae551afe6e2a/bioengineering-10-01290-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/95f52cfdc67e/bioengineering-10-01290-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/d9bc9b7d62e5/bioengineering-10-01290-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/91bff2093e25/bioengineering-10-01290-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/5dad8f5f243b/bioengineering-10-01290-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b0/10669875/79d1506af502/bioengineering-10-01290-g009.jpg

相似文献

[1]
A Novel Registration Method for a Mixed Reality Navigation System Based on a Laser Crosshair Simulator: A Technical Note.

Bioengineering (Basel). 2023-11-7

[2]
The Feasibility and Accuracy of Holographic Navigation with Laser Crosshair Simulator Registration on a Mixed-Reality Display.

Sensors (Basel). 2024-1-30

[3]
A novel mixed reality-guided dental implant placement navigation system based on virtual-actual registration.

Comput Biol Med. 2023-11

[4]
A new markerless patient-to-image registration method using a portable 3D scanner.

Med Phys. 2014-10

[5]
Holographic mixed-reality neuronavigation with a head-mounted device: technical feasibility and clinical application.

Neurosurg Focus. 2021-8

[6]
Augmented Reality Surgical Navigation System for External Ventricular Drain.

Healthcare (Basel). 2022-9-21

[7]
A hybrid robotic system for zygomatic implant placement based on mixed reality navigation.

Comput Methods Programs Biomed. 2024-6

[8]
Design and validation of a surgical navigation system for brachytherapy based on mixed reality.

Med Phys. 2019-6-28

[9]
Development of an inside-out augmented reality technique for neurosurgical navigation.

Neurosurg Focus. 2021-8

[10]
Nail it! vision-based drift correction for accurate mixed reality surgical guidance.

Int J Comput Assist Radiol Surg. 2023-7

引用本文的文献

[1]
Is Overlain Display a Right Choice for AR Navigation? A Qualitative Study of Head-Mounted Augmented Reality Surgical Navigation on Accuracy for Large-Scale Clinical Deployment.

CNS Neurosci Ther. 2025-1

[2]
Extended Reality-Based Head-Mounted Displays for Surgical Education: A Ten-Year Systematic Review.

Bioengineering (Basel). 2024-7-23

[3]
Head model dataset for mixed reality navigation in neurosurgical interventions for intracranial lesions.

Sci Data. 2024-5-25

[4]
The Feasibility and Accuracy of Holographic Navigation with Laser Crosshair Simulator Registration on a Mixed-Reality Display.

Sensors (Basel). 2024-1-30

本文引用的文献

[1]
Mixed Reality for Cranial Neurosurgical Planning: A Single-Center Applicability Study With the First 107 Subsequent Holograms.

Oper Neurosurg (Hagerstown). 2023-12-29

[2]
The Inaugural "Century" of Mixed Reality in Cranial Surgery: Virtual Reality Rehearsal/Augmented Reality Guidance and Its Learning Curve in the First 100-Case, Single-Surgeon Series.

Oper Neurosurg (Hagerstown). 2024-1-1

[3]
Case report: Impact of mixed reality on anatomical understanding and surgical planning in a complex fourth ventricular tumor extending to the lamina quadrigemina.

Front Surg. 2023-8-22

[4]
The use of hybrid operating rooms in neurosurgery, advantages, disadvantages, and future perspectives: a systematic review.

Acta Neurochir (Wien). 2023-9

[5]
Comparison of accuracy between augmented reality/mixed reality techniques and conventional techniques for epidural anesthesia using a practice phantom model kit.

BMC Anesthesiol. 2023-5-20

[6]
STTAR: Surgical Tool Tracking Using Off-the-Shelf Augmented Reality Head-Mounted Displays.

IEEE Trans Vis Comput Graph. 2024-7

[7]
Influence of surgical position and registration methods on clinical accuracy of navigation systems in brain tumor surgery.

Sci Rep. 2023-2-14

[8]
The HoloLens in medicine: A systematic review and taxonomy.

Med Image Anal. 2023-4

[9]
Letter to the Editor. Augmented reality-assisted navigation for deep target acquisition: is it reliable?

J Neurosurg. 2022-12-23

[10]
Augmented Reality to Compensate for Navigation Inaccuracies.

Sensors (Basel). 2022-12-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索