Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany.
Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
Sensors (Basel). 2024 Jan 30;24(3):896. doi: 10.3390/s24030896.
Addressing conventional neurosurgical navigation systems' high costs and complexity, this study explores the feasibility and accuracy of a simplified, cost-effective mixed reality navigation (MRN) system based on a laser crosshair simulator (LCS). A new automatic registration method was developed, featuring coplanar laser emitters and a recognizable target pattern. The workflow was integrated into Microsoft's HoloLens-2 for practical application. The study assessed the system's precision by utilizing life-sized 3D-printed head phantoms based on computed tomography (CT) or magnetic resonance imaging (MRI) data from 19 patients (female/male: 7/12, average age: 54.4 ± 18.5 years) with intracranial lesions. Six to seven CT/MRI-visible scalp markers were used as reference points per case. The LCS-MRN's accuracy was evaluated through landmark-based and lesion-based analyses, using metrics such as target registration error (TRE) and Dice similarity coefficient (DSC). The system demonstrated immersive capabilities for observing intracranial structures across all cases. Analysis of 124 landmarks showed a TRE of 3.0 ± 0.5 mm, consistent across various surgical positions. The DSC of 0.83 ± 0.12 correlated significantly with lesion volume (Spearman rho = 0.813, < 0.001). Therefore, the LCS-MRN system is a viable tool for neurosurgical planning, highlighting its low user dependency, cost-efficiency, and accuracy, with prospects for future clinical application enhancements.
针对传统神经外科导航系统成本高、复杂性强的问题,本研究探索了基于激光十字线模拟器 (LCS) 的简化、经济高效的混合现实导航 (MRN) 系统的可行性和准确性。开发了一种新的自动注册方法,其特点是共面激光发射器和可识别的目标图案。该工作流程已集成到 Microsoft 的 HoloLens-2 中,以便实际应用。该研究通过利用基于 19 名颅内病变患者的 CT 或 MRI 数据的全尺寸 3D 打印头模型(女性/男性:7/12,平均年龄:54.4 ± 18.5 岁)评估了系统的精度。每个病例使用 6 到 7 个 CT/MRI 可见头皮标记作为参考点。通过基于标志点和基于病变的分析,使用目标注册误差 (TRE) 和 Dice 相似系数 (DSC) 等指标评估 LCS-MRN 的准确性。该系统在所有病例中均表现出观察颅内结构的沉浸式能力。对 124 个标志点的分析表明,TRE 为 3.0 ± 0.5mm,在各种手术位置均保持一致。0.83 ± 0.12 的 DSC 与病变体积显著相关(Spearman rho = 0.813, < 0.001)。因此,LCS-MRN 系统是神经外科规划的一种可行工具,其具有低用户依赖性、成本效益高和准确性高的特点,具有未来临床应用增强的前景。
Bioengineering (Basel). 2023-11-7
World Neurosurg. 2018-10
World Neurosurg. 2019-2-11
ORL J Otorhinolaryngol Relat Spec. 2021
Bioengineering (Basel). 2025-7-3
Bioengineering (Basel). 2024-7-23
Bioengineering (Basel). 2023-11-7
Med Image Anal. 2023-4
Cardiovasc Intervent Radiol. 2023-5
Sensors (Basel). 2022-12-7
Zhonghua Wai Ke Za Zhi. 2022-12-1
Healthcare (Basel). 2022-9-21
World Neurosurg. 2022-11