Nordin Noor Ilanie, Mustafa Wan Azani, Lola Muhamad Safiih, Madi Elissa Nadia, Kamil Anton Abdulbasah, Nasution Marah Doly, K Abdul Hamid Abdul Aziz, Zainuddin Nurul Hila, Aruchunan Elayaraja, Abdullah Mohd Tajuddin
Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia.
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Kelantan, Bukit Ilmu, Machang 18500, Kelantan, Malaysia.
Bioengineering (Basel). 2023 Nov 15;10(11):1318. doi: 10.3390/bioengineering10111318.
Support ector achine (SVM) is a newer machine learning algorithm for classification, while logistic regression (LR) is an older statistical classification method. Despite the numerous studies contrasting SVM and LR, new improvements such as bagging and ensemble have been applied to them since these comparisons were made. This study proposes a new hybrid model based on SVM and LR for predicting small events per variable (EPV). The performance of the hybrid, SVM, and LR models with different EPV values was evaluated using COVID-19 data from December 2019 to May 2020 provided by the WHO. The study found that the hybrid model had better classification performance than SVM and LR in terms of accuracy, mean squared error (MSE), and root mean squared error (RMSE) for different EPV values. This hybrid model is particularly important for medical authorities and practitioners working in the face of future pandemics.
支持向量机(SVM)是一种较新的用于分类的机器学习算法,而逻辑回归(LR)是一种较旧的统计分类方法。尽管有大量研究对比了SVM和LR,但自这些比较完成以来,诸如装袋法和集成法等新的改进方法已应用于它们。本研究提出了一种基于SVM和LR的新混合模型,用于预测每个变量的小事件(EPV)。使用世界卫生组织提供的2019年12月至2020年5月的新冠疫情数据,评估了具有不同EPV值的混合模型、SVM模型和LR模型的性能。研究发现,对于不同的EPV值,混合模型在准确性、均方误差(MSE)和均方根误差(RMSE)方面比SVM和LR具有更好的分类性能。这种混合模型对于面对未来大流行的医疗当局和从业者尤为重要。