Suppr超能文献

使用混合支持向量机-逻辑回归模型提高新冠病毒疾病分类准确率

Enhancing COVID-19 Classification Accuracy with a Hybrid SVM-LR Model.

作者信息

Nordin Noor Ilanie, Mustafa Wan Azani, Lola Muhamad Safiih, Madi Elissa Nadia, Kamil Anton Abdulbasah, Nasution Marah Doly, K Abdul Hamid Abdul Aziz, Zainuddin Nurul Hila, Aruchunan Elayaraja, Abdullah Mohd Tajuddin

机构信息

Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia.

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Kelantan, Bukit Ilmu, Machang 18500, Kelantan, Malaysia.

出版信息

Bioengineering (Basel). 2023 Nov 15;10(11):1318. doi: 10.3390/bioengineering10111318.

Abstract

Support ector achine (SVM) is a newer machine learning algorithm for classification, while logistic regression (LR) is an older statistical classification method. Despite the numerous studies contrasting SVM and LR, new improvements such as bagging and ensemble have been applied to them since these comparisons were made. This study proposes a new hybrid model based on SVM and LR for predicting small events per variable (EPV). The performance of the hybrid, SVM, and LR models with different EPV values was evaluated using COVID-19 data from December 2019 to May 2020 provided by the WHO. The study found that the hybrid model had better classification performance than SVM and LR in terms of accuracy, mean squared error (MSE), and root mean squared error (RMSE) for different EPV values. This hybrid model is particularly important for medical authorities and practitioners working in the face of future pandemics.

摘要

支持向量机(SVM)是一种较新的用于分类的机器学习算法,而逻辑回归(LR)是一种较旧的统计分类方法。尽管有大量研究对比了SVM和LR,但自这些比较完成以来,诸如装袋法和集成法等新的改进方法已应用于它们。本研究提出了一种基于SVM和LR的新混合模型,用于预测每个变量的小事件(EPV)。使用世界卫生组织提供的2019年12月至2020年5月的新冠疫情数据,评估了具有不同EPV值的混合模型、SVM模型和LR模型的性能。研究发现,对于不同的EPV值,混合模型在准确性、均方误差(MSE)和均方根误差(RMSE)方面比SVM和LR具有更好的分类性能。这种混合模型对于面对未来大流行的医疗当局和从业者尤为重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35b2/10669812/ce81e2112282/bioengineering-10-01318-g001.jpg

相似文献

1
Enhancing COVID-19 Classification Accuracy with a Hybrid SVM-LR Model.
Bioengineering (Basel). 2023 Nov 15;10(11):1318. doi: 10.3390/bioengineering10111318.
2
Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms.
PLoS One. 2020 Feb 6;15(2):e0228422. doi: 10.1371/journal.pone.0228422. eCollection 2020.
3
Forecasting of stage-discharge in a non-perennial river using machine learning with gamma test.
Heliyon. 2023 May 13;9(5):e16290. doi: 10.1016/j.heliyon.2023.e16290. eCollection 2023 May.
4
Breast Cancer Subtypes Classification with Hybrid Machine Learning Model.
Methods Inf Med. 2022 Sep;61(3-04):68-83. doi: 10.1055/s-0042-1751043. Epub 2022 Sep 12.
5
Machine Learning Models of Survival Prediction in Trauma Patients.
J Clin Med. 2019 Jun 5;8(6):799. doi: 10.3390/jcm8060799.
6
Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis.
Comput Methods Programs Biomed. 2022 Oct;225:107028. doi: 10.1016/j.cmpb.2022.107028. Epub 2022 Jul 21.
7
8
Predicting complications of percutaneous coronary intervention using a novel support vector method.
J Am Med Inform Assoc. 2013 Jul-Aug;20(4):778-86. doi: 10.1136/amiajnl-2012-001588. Epub 2013 Apr 18.
9
A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning.
Comput Biol Med. 2022 Jul;146:105560. doi: 10.1016/j.compbiomed.2022.105560. Epub 2022 Apr 27.
10
A reliable method for colorectal cancer prediction based on feature selection and support vector machine.
Med Biol Eng Comput. 2019 Apr;57(4):901-912. doi: 10.1007/s11517-018-1930-0. Epub 2018 Nov 26.

本文引用的文献

1
Developing forecasting model for future pandemic applications based on COVID-19 data 2020-2022.
PLoS One. 2023 May 12;18(5):e0285407. doi: 10.1371/journal.pone.0285407. eCollection 2023.
3
Machine learning applications for COVID-19 outbreak management.
Neural Comput Appl. 2022;34(18):15313-15348. doi: 10.1007/s00521-022-07424-w. Epub 2022 Jun 10.
4
Comparative analysis of machine learning approaches to analyze and predict the COVID-19 outbreak.
PeerJ Comput Sci. 2021 Dec 16;7:e746. doi: 10.7717/peerj-cs.746. eCollection 2021.
5
Application of Bayesian Decision Tree in Hematology Research: Differential Diagnosis of -Thalassemia Trait from Iron Deficiency Anemia.
Comput Math Methods Med. 2021 Nov 9;2021:6401105. doi: 10.1155/2021/6401105. eCollection 2021.
6
Coronavirus disease (COVID-19) cases analysis using machine-learning applications.
Appl Nanosci. 2023;13(3):2013-2025. doi: 10.1007/s13204-021-01868-7. Epub 2021 May 21.
8
Estimates of the severity of coronavirus disease 2019: a model-based analysis.
Lancet Infect Dis. 2020 Jun;20(6):669-677. doi: 10.1016/S1473-3099(20)30243-7. Epub 2020 Mar 30.
9
Data-based analysis, modelling and forecasting of the COVID-19 outbreak.
PLoS One. 2020 Mar 31;15(3):e0230405. doi: 10.1371/journal.pone.0230405. eCollection 2020.
10
How to Develop, Validate, and Compare Clinical Prediction Models Involving Radiological Parameters: Study Design and Statistical Methods.
Korean J Radiol. 2016 May-Jun;17(3):339-50. doi: 10.3348/kjr.2016.17.3.339. Epub 2016 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验