Suppr超能文献

基于混合机器学习模型的乳腺癌亚型分类。

Breast Cancer Subtypes Classification with Hybrid Machine Learning Model.

机构信息

Department of Computer Science and Engineering, Dr. B.C. Roy Engineering College, Durgapur, West Bengal, India.

Department of Computer Science and Engineering, University of Kalyani, Kalyani, West Bengal, India.

出版信息

Methods Inf Med. 2022 Sep;61(3-04):68-83. doi: 10.1055/s-0042-1751043. Epub 2022 Sep 12.

Abstract

BACKGROUND

Breast cancer is the most prevailing heterogeneous disease among females characterized with distinct molecular subtypes and varied clinicopathological features. With the emergence of various artificial intelligence techniques especially machine learning, the breast cancer research has attained new heights in cancer detection and prognosis.

OBJECTIVE

Recent development in computer driven diagnostic system has enabled the clinicians to improve the accuracy in detecting various types of breast tumors. Our study is to develop a computer driven diagnostic system which will enable the clinicians to improve the accuracy in detecting various types of breast tumors.

METHODS

In this article, we proposed a breast cancer classification model based on the hybridization of machine learning approaches for classifying triple-negative breast cancer and non-triple negative breast cancer patients with clinicopathological features collected from multiple tertiary care hospitals/centers.

RESULTS

The results of genetic algorithm and support vector machine (GA-SVM) hybrid model was compared with classics feature selection SVM hybrid models like support vector machine-recursive feature elimination (SVM-RFE), LASSO-SVM, Grid-SVM, and linear SVM. The classification results obtained from GA-SVM hybrid model outperformed the other compared models when applied on two distinct hospital-based datasets of patients investigated with breast cancer in North West of African subcontinent. To validate the predictive model accuracy, 10-fold cross-validation method was applied on all models with the same multicentered datasets. The model performance was evaluated with well-known metrics like mean squared error, logarithmic loss, F1-score, area under the ROC curve, and the precision-recall curve.

CONCLUSION

The hybrid machine learning model can be employed for breast cancer subtypes classification that could help the medical practitioners in better treatment planning and disease outcome.

摘要

背景

乳腺癌是女性中最常见的异质性疾病,具有明显的分子亚型和不同的临床病理特征。随着各种人工智能技术,尤其是机器学习的出现,乳腺癌研究在癌症检测和预后方面达到了新的高度。

目的

最近计算机驱动的诊断系统的发展使临床医生能够提高检测各种类型乳腺癌的准确性。我们的研究旨在开发一种计算机驱动的诊断系统,使临床医生能够提高检测各种类型乳腺癌的准确性。

方法

在本文中,我们提出了一种基于机器学习方法的乳腺癌分类模型,用于对具有从多家三级医院/中心收集的临床病理特征的三阴性乳腺癌和非三阴性乳腺癌患者进行分类。

结果

遗传算法和支持向量机(GA-SVM)混合模型的结果与经典特征选择 SVM 混合模型(如支持向量机递归特征消除(SVM-RFE)、LASSO-SVM、Grid-SVM 和线性 SVM)进行了比较。当应用于非洲西北部的两个不同的基于医院的乳腺癌患者数据集时,GA-SVM 混合模型的分类结果优于其他比较模型。为了验证预测模型的准确性,我们在相同的多中心数据集上对所有模型应用了 10 倍交叉验证方法。使用均方误差、对数损失、F1 分数、ROC 曲线下面积和精度-召回曲线等著名指标评估了模型性能。

结论

混合机器学习模型可用于乳腺癌亚型分类,有助于临床医生更好地进行治疗计划和疾病预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验