增强的抑制作用可能有助于维持脆性X综合征Fmr1靶向转基因大鼠模型腹侧海马体的正常网络功能。
Increased Inhibition May Contribute to Maintaining Normal Network Function in the Ventral Hippocampus of a Fmr1-Targeted Transgenic Rat Model of Fragile X Syndrome.
作者信息
Leontiadis Leonidas J, Trompoukis George, Felemegkas Panagiotis, Tsotsokou Giota, Miliou Athina, Papatheodoropoulos Costas
机构信息
Laboratory of Neurophysiology, Department of Medicine, University of Patras, 26504 Rion, Greece.
出版信息
Brain Sci. 2023 Nov 17;13(11):1598. doi: 10.3390/brainsci13111598.
A common neurobiological mechanism in several neurodevelopmental disorders, including fragile X syndrome (FXS), is alterations in the balance between excitation and inhibition in the brain. It is thought that in the hippocampus, as in other brain regions, FXS is associated with increased excitability and reduced inhibition. However, it is still not known whether these changes apply to both the dorsal and ventral hippocampus, which appear to be differently involved in neurodegenerative disorders. Using a Fmr1 knock-out (KO) rat model of FXS, we found increased neuronal excitability in both the dorsal and ventral KO hippocampus and increased excitatory synaptic transmission in the dorsal hippocampus. Interestingly, synaptic inhibition is significantly increased in the ventral but not the dorsal KO hippocampus. Furthermore, the ventral KO hippocampus displays increased expression of the α1GABA receptor subtype and a remarkably reduced rate of epileptiform discharges induced by magnesium-free medium. In contrast, the dorsal KO hippocampus displays an increased rate of epileptiform discharges and similar expression of α1GABA receptors compared with the dorsal WT hippocampus. Blockade of α5GABA receptors by L-655,708 did not affect epileptiform discharges in any genotype or hippocampal segment, and the expression of α5GABA receptors did not differ between WT and KO hippocampus. These results suggest that the increased excitability of the dorsal KO hippocampus contributes to its heightened tendency to epileptiform discharges, while the increased phasic inhibition in the Fmr1-KO ventral hippocampus may represent a homeostatic mechanism that compensates for the increased excitability reducing its vulnerability to epileptic activity.
包括脆性X综合征(FXS)在内的几种神经发育障碍中常见的神经生物学机制是大脑中兴奋与抑制平衡的改变。人们认为,与其他脑区一样,海马体中FXS与兴奋性增加和抑制作用减弱有关。然而,尚不清楚这些变化是否适用于背侧和腹侧海马体,而这两个区域在神经退行性疾病中的作用似乎有所不同。利用FXS的Fmr1基因敲除(KO)大鼠模型,我们发现背侧和腹侧KO海马体中的神经元兴奋性均增加,且背侧海马体中的兴奋性突触传递增强。有趣的是,腹侧KO海马体中的突触抑制显著增加,而背侧KO海马体中则没有。此外,腹侧KO海马体中α1GABA受体亚型的表达增加,且无镁培养基诱导的癫痫样放电速率显著降低。相比之下,与背侧野生型(WT)海马体相比,背侧KO海马体的癫痫样放电速率增加,α1GABA受体表达相似。L-655,708对α5GABA受体的阻断在任何基因型或海马体节段中均不影响癫痫样放电,且WT和KO海马体中α5GABA受体的表达没有差异。这些结果表明,背侧KO海马体兴奋性增加导致其癫痫样放电倾向增强,而Fmr1基因敲除腹侧海马体中阶段性抑制增加可能代表一种稳态机制,可补偿兴奋性增加,降低其对癫痫活动的易感性。