文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Rescue of sharp wave-ripples and prevention of network hyperexcitability in the ventral but not the dorsal hippocampus of a rat model of fragile X syndrome.

作者信息

Leontiadis Leonidas J, Trompoukis George, Tsotsokou Giota, Miliou Athina, Felemegkas Panagiotis, Papatheodoropoulos Costas

机构信息

Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece.

出版信息

Front Cell Neurosci. 2023 Dec 1;17:1296235. doi: 10.3389/fncel.2023.1296235. eCollection 2023.


DOI:10.3389/fncel.2023.1296235
PMID:38107412
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10722241/
Abstract

Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder characterized by intellectual disability and is related to autism. FXS is caused by mutations of the fragile X messenger ribonucleoprotein 1 gene () and is associated with alterations in neuronal network excitability in several brain areas including hippocampus. The loss of fragile X protein affects brain oscillations, however, the effects of FXS on hippocampal sharp wave-ripples (SWRs), an endogenous hippocampal pattern contributing to memory consolidation have not been sufficiently clarified. In addition, it is still not known whether dorsal and ventral hippocampus are similarly affected by FXS. We used a knock-out (KO) rat model of FXS and electrophysiological recordings from the CA1 area of adult rat hippocampal slices to assess spontaneous and evoked neural activity. We find that SWRs and associated multiunit activity are affected in the dorsal but not the ventral KO hippocampus, while complex spike bursts remain normal in both segments of the KO hippocampus. Local network excitability increases in the dorsal KO hippocampus. Furthermore, specifically in the ventral hippocampus of KO rats we found an increased effectiveness of inhibition in suppressing excitation and an upregulation of α1GABA receptor subtype. These changes in the ventral KO hippocampus are accompanied by a striking reduction in its susceptibility to induced epileptiform activity. We propose that the neuronal network specifically in the ventral segment of the hippocampus is reorganized in adult -KO rats by means of balanced changes between excitability and inhibition to ensure normal generation of SWRs and preventing at the same time derailment of the neural activity toward hyperexcitability.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/fa75368a680a/fncel-17-1296235-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/9ef43055d55c/fncel-17-1296235-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/93f4ff82fdd5/fncel-17-1296235-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/272850141a65/fncel-17-1296235-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/c9cabb6b9ed9/fncel-17-1296235-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/768ed9f1f7be/fncel-17-1296235-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/5a81ed10a70c/fncel-17-1296235-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/e4f9d1eff9f5/fncel-17-1296235-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/ad94bcea5ab0/fncel-17-1296235-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/c842c0559b40/fncel-17-1296235-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/cb6539dc5aa7/fncel-17-1296235-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/fa75368a680a/fncel-17-1296235-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/9ef43055d55c/fncel-17-1296235-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/93f4ff82fdd5/fncel-17-1296235-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/272850141a65/fncel-17-1296235-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/c9cabb6b9ed9/fncel-17-1296235-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/768ed9f1f7be/fncel-17-1296235-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/5a81ed10a70c/fncel-17-1296235-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/e4f9d1eff9f5/fncel-17-1296235-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/ad94bcea5ab0/fncel-17-1296235-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/c842c0559b40/fncel-17-1296235-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/cb6539dc5aa7/fncel-17-1296235-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62cf/10722241/fa75368a680a/fncel-17-1296235-g011.jpg

相似文献

[1]
Rescue of sharp wave-ripples and prevention of network hyperexcitability in the ventral but not the dorsal hippocampus of a rat model of fragile X syndrome.

Front Cell Neurosci. 2023-12-1

[2]
Increased Inhibition May Contribute to Maintaining Normal Network Function in the Ventral Hippocampus of a Fmr1-Targeted Transgenic Rat Model of Fragile X Syndrome.

Brain Sci. 2023-11-17

[3]
Septotemporal Variation of Information Processing in the Hippocampus of Fmr1 KO Rat.

Dev Neurosci. 2024

[4]
Region-Related Differences in Short-Term Synaptic Plasticity and Synaptotagmin-7 in the Male and Female Hippocampus of a Rat Model of Fragile X Syndrome.

Int J Mol Sci. 2024-6-26

[5]
Abnormal Sleep Architecture and Hippocampal Circuit Dysfunction in a Mouse Model of Fragile X Syndrome.

Neuroscience. 2018-5-22

[6]
Scaling of Network Excitability and Inhibition may Contribute to the Septotemporal Differentiation of Sharp Waves-Ripples in Rat Hippocampus In Vitro.

Neuroscience. 2021-3-15

[7]
Voltage-Independent SK-Channel Dysfunction Causes Neuronal Hyperexcitability in the Hippocampus of Knock-Out Mice.

J Neurosci. 2018-11-2

[8]
Hyperexcitability in the olfactory bulb and impaired fine odor discrimination in the KO mouse model of fragile X syndrome.

bioRxiv. 2023-4-10

[9]
Abnormal hippocampal theta and gamma hypersynchrony produces network and spike timing disturbances in the Fmr1-KO mouse model of Fragile X syndrome.

Neurobiol Dis. 2018-2-24

[10]
Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome.

Neurobiol Dis. 2016-5

引用本文的文献

[1]
Compensatory Regulation of Excitation/Inhibition Balance in the Ventral Hippocampus: Insights from Fragile X Syndrome.

Biology (Basel). 2025-3-31

[2]
Hippocampal Place Cell Sequences Are Impaired in a Rat Model of Fragile X Syndrome.

J Neurosci. 2025-4-9

[3]
Hippocampal place cell sequences are impaired in a rat model of Fragile X Syndrome.

bioRxiv. 2025-2-13

[4]
Region-Related Differences in Short-Term Synaptic Plasticity and Synaptotagmin-7 in the Male and Female Hippocampus of a Rat Model of Fragile X Syndrome.

Int J Mol Sci. 2024-6-26

[5]
Septotemporal Variation of Information Processing in the Hippocampus of Fmr1 KO Rat.

Dev Neurosci. 2024

本文引用的文献

[1]
Comparison of three common inbred mouse strains reveals substantial differences in hippocampal GABAergic interneuron populations and in vitro network oscillations.

Eur J Neurosci. 2023-9

[2]
Hypnotic treatment reverses NREM sleep disruption and EEG desynchronization in a mouse model of Fragile X syndrome to rescue memory consolidation deficits.

bioRxiv. 2023-7-18

[3]
Impairments in hippocampal oscillations accompany the loss of LTP induced by GIRK activity blockade.

Neuropharmacology. 2023-11-1

[4]
Social Anxiety in Neurodevelopmental Disorders: The Case of Fragile X Syndrome.

Am J Intellect Dev Disabil. 2023-7-1

[5]
Pathway specific interventions reveal the multiple roles of ventral hippocampus projections in cognitive functions.

Rev Neurosci. 2023-10-26

[6]
Hippocampal sharp wave ripples underlie stress susceptibility in male mice.

Nat Commun. 2023-4-20

[7]
Sleep-A brain-state serving systems memory consolidation.

Neuron. 2023-4-5

[8]
Implication of Hippocampal Neurogenesis in Autism Spectrum Disorder: Pathogenesis and Therapeutic Implications.

Curr Neuropharmacol. 2023

[9]
Experience-dependent changes in hippocampal spatial activity and hippocampal circuit function are disrupted in a rat model of Fragile X Syndrome.

Mol Autism. 2022-12-20

[10]
Mechanisms Driving the Emergence of Neuronal Hyperexcitability in Fragile X Syndrome.

Int J Mol Sci. 2022-6-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索