Suppr超能文献

静电纺丝纳米纤维导管填充基于胶原蛋白的基质(ColM)用于神经再生。

Electrospun Nanofibrous Conduit Filled with a Collagen-Based Matrix (ColM) for Nerve Regeneration.

机构信息

School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

出版信息

Molecules. 2023 Nov 20;28(22):7675. doi: 10.3390/molecules28227675.

Abstract

Traumatic nerve defects result in dysfunctions of sensory and motor nerves and are usually accompanied by pain. Nerve guidance conduits (NGCs) are widely applied to bridge large-gap nerve defects. However, few NGCs can truly replace autologous nerve grafts to achieve comprehensive neural regeneration and function recovery. Herein, a three-dimensional (3D) sponge-filled nanofibrous NGC (sf@NGC) resembling the structure of native peripheral nerves was developed. The conduit was fabricated by electrospinning a poly(L-lactide-co-glycolide) (PLGA) membrane, whereas the intraluminal filler was obtained by freeze-drying a collagen-based matrix (ColM) resembling the extracellular matrix. The effects of the electrospinning process and of the composition of ColM on the physicochemical performance of sf@NGC were investigated in detail. Furthermore, the biocompatibility of the PLGA sheath and ColM were evaluated. The continuous and homogeneous PLGA nanofiber membrane had high porosity and tensile strength. ColM was shown to exhibit an ECM-like architecture characterized by a multistage pore structure and a high porosity level of over 70%. The PLGA sheath and ColM were shown to possess stagewise degradability and good biocompatibility. In conclusion, sf@NGC may have a favorable potential for the treatment of nerve reconstruction.

摘要

创伤性神经缺损导致感觉和运动神经功能障碍,通常伴有疼痛。神经引导导管(NGC)广泛应用于桥接大间隙神经缺损。然而,很少有 NGC 能够真正替代自体神经移植,实现全面的神经再生和功能恢复。本文构建了一种类似于天然周围神经结构的三维(3D)海绵填充纳米纤维 NGC(sf@NGC)。该导管通过静电纺丝聚(L-丙交酯-共-乙交酯)(PLGA)膜制备,而管腔内填充物则通过冷冻干燥类似于细胞外基质的胶原基质(ColM)获得。详细研究了静电纺丝工艺和 ColM 组成对 sf@NGC 理化性能的影响。此外,还评估了 PLGA 鞘和 ColM 的生物相容性。连续且均匀的 PLGA 纳米纤维膜具有高孔隙率和拉伸强度。ColM 表现出具有多级孔结构和超过 70%的高孔隙率水平的类似细胞外基质的结构。PLGA 鞘和 ColM 具有阶段性的降解能力和良好的生物相容性。总之,sf@NGC 可能具有良好的神经重建治疗潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e172/10675555/039edcc5b6d2/molecules-28-07675-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验