Suppr超能文献

基于混合最优特征选择的迭代深度卷积学习的 COVID-19 分类系统。

Hybrid optimal feature selection-based iterative deep convolution learning for COVID-19 classification system.

机构信息

Research Scholar, Department of Computer Science and Engineering, Biju Patnaik University of Technology, Rourkela, Odisha, 769015, India.

Professor, Master of Computer Applications, Einstein College of Computer Application and Management, Khurda, Odisha, 752060, India.

出版信息

Comput Biol Med. 2024 Oct;181:109031. doi: 10.1016/j.compbiomed.2024.109031. Epub 2024 Aug 21.

Abstract

The COVID-19 pandemic has necessitated the development of innovative and efficient methods for early detection and diagnosis. Integrating Internet of Things (IoT) devices and applications in healthcare has facilitated various functions. This work aims to employ practical artificial intelligence (AI) approaches to extract meaningful information from the vast amount of IoT data to perform disease prediction tasks. However, traditional AI methods need help in feature analysis due to the complexity and scale of IoT data. So, this work implements the optimal iterative COVID-19 classification network (OICC-Net) using machine learning optimization and deep learning approaches. Initially, the preprocessing operation normalizes the dataset with uniform values. Here, random forest infused particle swarm-based black widow optimization (RFI-PS-BWO) algorithm was used to get the disease-specific patterns from SARS-CoV-2 (SC2), and other disease classes, where patterns of the SC2 virus are very similar to those of other virus classes. In addition, an iterative deep convolution learning (IDCL) feature selection method is used to distinguish features from the RFI-PS-BWO data. This iterative process enhances the performance of feature selection by providing improved representation and reducing the dimensionality of the input data. Then, a one-dimensional convolutional neural network (1D-CNN) was employed to classify and identify the extracted features from SC2 with no virus classes. The 1D-CNN model is trained using a large dataset of COVID-19 samples, enabling it to learn intricate patterns and make accurate predictions. It was tested and found that the proposed OICC-Net system is more accurate than current methods, with a score of 99.97 % for F1-score, 100 % for sensitivity, 100 % for specificity, 99.98 % for precision, and 99.99 % for recall.

摘要

新冠疫情大流行促使人们开发创新且高效的方法,以便进行早期检测和诊断。将物联网 (IoT) 设备和应用集成到医疗保健中,实现了各种功能。本工作旨在利用实用的人工智能 (AI) 方法,从大量的 IoT 数据中提取有意义的信息,以执行疾病预测任务。然而,由于 IoT 数据的复杂性和规模,传统的 AI 方法在特征分析方面需要帮助。因此,本工作采用机器学习优化和深度学习方法实现了最优迭代 COVID-19 分类网络 (OICC-Net)。首先,预处理操作通过使用统一值对数据集进行归一化。这里,随机森林注入粒子群的黑寡妇优化 (RFI-PS-BWO) 算法用于从 SARS-CoV-2 (SC2) 和其他疾病类别中获取特定疾病的模式,其中 SC2 病毒的模式与其他病毒类别非常相似。此外,还使用迭代深度卷积学习 (IDCL) 特征选择方法从 RFI-PS-BWO 数据中区分特征。这个迭代过程通过提供改进的表示和减少输入数据的维度来增强特征选择的性能。然后,使用一维卷积神经网络 (1D-CNN) 对从 SC2 中提取的特征进行分类和识别,这些特征没有病毒类别。1D-CNN 模型使用大量的 COVID-19 样本进行训练,使它能够学习复杂的模式并做出准确的预测。经测试发现,所提出的 OICC-Net 系统比现有方法更准确,F1 得分为 99.97%,敏感度为 100%,特异性为 100%,精度为 99.98%,召回率为 99.99%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验