Suppr超能文献

轻量级人体跌倒检测网络。

A Lightweight Human Fall Detection Network.

机构信息

School of the Internet of Things Engineering, Wuxi University, Wuxi 214105, China.

School of Automation, Nanjing University of Information Science & Technology, Nanjing 211800, China.

出版信息

Sensors (Basel). 2023 Nov 9;23(22):9069. doi: 10.3390/s23229069.

Abstract

The rising issue of an aging population has intensified the focus on the health concerns of the elderly. Among these concerns, falls have emerged as a predominant health threat for this demographic. The YOLOv5 family represents the forefront of techniques for human fall detection. However, this algorithm, although advanced, grapples with issues such as computational demands, challenges in hardware integration, and vulnerability to occlusions in the designated target group. To address these limitations, we introduce a pioneering lightweight approach named CGNS-YOLO for human fall detection. Our method incorporates both the GSConv module and the GDCN module to reconfigure the neck network of YOLOv5s. The objective behind this modification is to diminish the model size, curtail floating-point computations during feature channel fusion, and bolster feature extraction efficacy, thereby enhancing hardware adaptability. We also integrate a normalization-based attention module (NAM) into the framework, which concentrates on salient fall-related data and deemphasizes less pertinent information. This strategic refinement augments the algorithm's precision. By embedding the SCYLLA Intersection over Union (SIoU) loss function, our model benefits from faster convergence and heightened detection precision. We evaluated our model using the Multicam dataset and the Le2i Fall Detection dataset. Our findings indicate a 1.2% enhancement in detection accuracy compared with the conventional YOLOv5s framework. Notably, our model realized a 20.3% decrease in parameter tally and a 29.6% drop in floating-point operations. A comprehensive instance analysis and comparative assessments underscore the method's superiority and efficacy.

摘要

人口老龄化问题日益加剧,使人们更加关注老年人的健康问题。在这些问题中,老年人跌倒已成为主要的健康威胁。YOLOv5 系列代表了人体跌倒检测技术的前沿。然而,尽管该算法先进,但仍存在一些问题,如计算需求、硬件集成挑战以及在指定目标群体中易受遮挡的问题。为了解决这些局限性,我们引入了一种名为 CGNS-YOLO 的开创性轻量级人体跌倒检测方法。我们的方法结合了 GSConv 模块和 GDCN 模块,重新配置了 YOLOv5s 的颈部网络。这样做的目的是减小模型的大小,减少特征通道融合过程中的浮点运算次数,并增强特征提取的效果,从而提高硬件的适应性。我们还在框架中集成了一个基于归一化的注意力模块(NAM),该模块专注于与跌倒相关的显著数据,而淡化不相关的信息。这种策略上的改进提高了算法的精度。通过嵌入 SCYLLA 交并比(SIoU)损失函数,我们的模型受益于更快的收敛速度和更高的检测精度。我们使用 Multicam 数据集和 Le2i Fall Detection 数据集对我们的模型进行了评估。与传统的 YOLOv5s 框架相比,我们的模型检测精度提高了 1.2%。值得注意的是,我们的模型在参数数量上减少了 20.3%,在浮点运算次数上减少了 29.6%。全面的实例分析和比较评估突出了该方法的优越性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d5b/10674212/cb80cdebc175/sensors-23-09069-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验