College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.
Key Laboratory of Breeding Equipment, Ministry of Agriculture and Rural Affairs, Nanjing 210031, China.
Sensors (Basel). 2023 Nov 12;23(22):9128. doi: 10.3390/s23229128.
The core body temperature serves as a pivotal physiological metric indicative of sow health, with rectal thermometry prevailing as a prevalent method for estimating core body temperature within sow farms. Nonetheless, employing contact thermometers for rectal temperature measurement proves to be time-intensive, labor-demanding, and hygienically suboptimal. Addressing the issues of minimal automation and temperature measurement accuracy in sow temperature monitoring, this study introduces an automatic temperature monitoring method for sows, utilizing a segmentation network amalgamating YOLOv5s and DeepLabv3+, complemented by an adaptive genetic algorithm-random forest (AGA-RF) regression algorithm. In developing the sow vulva segmenter, YOLOv5s was synergized with DeepLabv3+, and the CBAM attention mechanism and MobileNetv2 network were incorporated to ensure precise localization and expedited segmentation of the vulva region. Within the temperature prediction module, an optimized regression algorithm derived from the random forest algorithm facilitated the construction of a temperature inversion model, predicated upon environmental parameters and vulva temperature, for the rectal temperature prediction in sows. Testing revealed that vulvar segmentation IoU was 91.50%, while the predicted MSE, MAE, and R for rectal temperature were 0.114 °C, 0.191 °C, and 0.845, respectively. The automatic sow temperature monitoring method proposed herein demonstrates substantial reliability and practicality, facilitating an autonomous sow temperature monitoring.
核心体温是母猪健康的关键生理指标,直肠测温是母猪养殖场中估计核心体温的常用方法。然而,使用接触式体温计进行直肠温度测量既费时费力,又不卫生。针对母猪体温监测中自动化程度低和温度测量精度的问题,本研究提出了一种基于 YOLOv5s 和 DeepLabv3+ 融合的分割网络,并结合自适应遗传算法-随机森林(AGA-RF)回归算法的母猪自动体温监测方法。在开发母猪外阴分割器时,将 YOLOv5s 与 DeepLabv3+ 相结合,并采用 CBAM 注意力机制和 MobileNetv2 网络,以确保对外阴区域的精确定位和快速分割。在温度预测模块中,通过随机森林算法优化的回归算法构建了一个基于环境参数和外阴温度的直肠温度预测的温度反演模型。测试结果表明,外阴分割的 IoU 为 91.50%,而预测的直肠温度的 MSE、MAE 和 R 分别为 0.114°C、0.191°C 和 0.845。本文提出的自动母猪体温监测方法具有较高的可靠性和实用性,为母猪体温的自主监测提供了可能。