Suppr超能文献

不同运动强度下运动诱导能量消耗(包括运动后过量耗氧量 EPOC)的智能估计。

Intelligent Estimation of Exercise Induced Energy Expenditure Including Excess Post-Exercise Oxygen Consumption (EPOC) with Different Exercise Intensity.

机构信息

Department of Computer Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

Department of Sport Industry Studies, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

出版信息

Sensors (Basel). 2023 Nov 16;23(22):9235. doi: 10.3390/s23229235.

Abstract

The limited availability of calorimetry systems for estimating human energy expenditure (EE) while conducting exercise has prompted the development of wearable sensors utilizing readily accessible methods. We designed an energy expenditure estimation method which considers the energy consumed during the exercise, as well as the excess post-exercise oxygen consumption (EPOC) using machine learning algorithms. Thirty-two healthy adults (mean age = 28.2 years; 11 females) participated in 20 min of aerobic exercise sessions (low intensity = 40% of maximal oxygen uptake [VO2 max], high intensity = 70% of VO2 max). The physical characteristics, exercise intensity, and the heart rate data monitored from the beginning of the exercise sessions to where the participants' metabolic rate returned to an idle state were used in the EE estimation models. Our proposed estimation shows up to 0.976 correlation between estimated energy expenditure and ground truth (root mean square error: 0.624 kcal/min). In conclusion, our study introduces a highly accurate method for estimating human energy expenditure during exercise using wearable sensors and machine learning. The achieved correlation up to 0.976 with ground truth values underscores its potential for widespread use in fitness, healthcare, and sports performance monitoring.

摘要

由于可用于估计人体能量消耗 (EE) 的量热仪系统有限,因此已经开发出了利用易于获取的方法的可穿戴传感器。我们设计了一种能量消耗估计方法,该方法考虑了运动过程中消耗的能量以及运动后过量氧耗 (EPOC),并使用了机器学习算法。32 名健康成年人(平均年龄= 28.2 岁;女性 11 名)参加了 20 分钟的有氧运动(低强度=最大摄氧量 [VO2 max] 的 40%,高强度= VO2 max 的 70%)。EE 估计模型使用了参与者的身体特征、运动强度以及从运动开始到代谢率恢复到空闲状态的心率数据。我们提出的估计方法在估计能量消耗与真实值之间的相关性高达 0.976(均方根误差:0.624 kcal/min)。总之,我们的研究使用可穿戴传感器和机器学习为运动期间的人体能量消耗提供了一种高度精确的估计方法。高达 0.976 的相关性与真实值表明其在健身、医疗保健和运动表现监测中的广泛应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c437/10675648/47dbc1e33238/sensors-23-09235-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验