Suppr超能文献

基于信息准则的高精度位移传感器新型信息驱动平滑样条线性化方法

Novel Information-Driven Smoothing Spline Linearization Method for High-Precision Displacement Sensors Based on Information Criterions.

作者信息

Zhang Wen-Hao, Dai Lin, Chen Wang, Sun Anyu, Zhu Wu-Le, Ju Bing-Feng

机构信息

State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310058, China.

出版信息

Sensors (Basel). 2023 Nov 18;23(22):9268. doi: 10.3390/s23229268.

Abstract

A noise-resistant linearization model that reveals the true nonlinearity of the sensor is essential for retrieving accurate physical displacement from the signals captured by sensing electronics. In this paper, we propose a novel information-driven smoothing spline linearization method, which innovatively integrates one new and three standard information criterions into a smoothing spline for the high-precision displacement sensors' linearization. Using theoretical analysis and Monte Carlo simulation, the proposed linearization method is demonstrated to outperform traditional polynomial and spline linearization methods for high-precision displacement sensors with a low noise to range ratio in the 10 level. Validation experiments were carried out on two different types of displacement sensors to benchmark the performance of the proposed method compared to the polynomial models and the the non-smoothing cubic spline. The results show that the proposed method with the new modified Akaike Information Criterion stands out compared to the other linearization methods and can improve the residual nonlinearity by over 50% compared to the standard polynomial model. After being linearized via the proposed method, the residual nonlinearities reach as low as ±0.0311% F.S. (Full Scale of Range), for the 1.5 mm range chromatic confocal displacement sensor, and ±0.0047% F.S., for the 100 mm range laser triangulation displacement sensor.

摘要

对于从传感电子设备捕获的信号中获取精确的物理位移而言,一种能够揭示传感器真正非线性特性的抗噪声线性化模型至关重要。在本文中,我们提出了一种新颖的信息驱动平滑样条线性化方法,该方法创新性地将一种新的信息准则和三种标准信息准则集成到一个平滑样条中,用于高精度位移传感器的线性化。通过理论分析和蒙特卡洛模拟表明,对于噪声与量程比处于10水平的高精度位移传感器,所提出的线性化方法优于传统的多项式和样条线性化方法。在两种不同类型的位移传感器上进行了验证实验,以对比所提方法与多项式模型和非平滑三次样条的性能。结果表明,与其他线性化方法相比,采用新修正的赤池信息准则的所提方法表现突出,与标准多项式模型相比,可将残余非线性降低50%以上。通过所提方法进行线性化后,对于量程为1.5毫米的色度共焦位移传感器,残余非线性低至±0.0311% F.S.(满量程);对于量程为100毫米的激光三角测量位移传感器,残余非线性低至±0.0047% F.S.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58c0/10674328/44a1ce6f4599/sensors-23-09268-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验