Suppr超能文献

使用可逆实例归一化异常变压器进行时间序列数据中的异常检测。

Anomaly Detection in Time Series Data Using Reversible Instance Normalized Anomaly Transformer.

作者信息

Baidya Ranjai, Jeong Heon

机构信息

Kpro System, 673-1 Dogok-ri, Wabu-eup, Namyangju-si 12270, Gyeonggi-do, Republic of Korea.

Department of Fire Service Administration, Chodang University, 80, Muanro, Muaneup, Muangun 58530, Jeollanam-do, Republic of Korea.

出版信息

Sensors (Basel). 2023 Nov 19;23(22):9272. doi: 10.3390/s23229272.

Abstract

Anomalies are infrequent in nature, but detecting these anomalies could be crucial for the proper functioning of any system. The rarity of anomalies could be a challenge for their detection as detection models are required to depend on the relations of the datapoints with their adjacent datapoints. In this work, we use the rarity of anomalies to detect them. For this, we introduce the reversible instance normalized anomaly transformer (RINAT). Rooted in the foundational principles of the anomaly transformer, RINAT incorporates both prior and series associations for each time point. The prior association uses a learnable Gaussian kernel to ensure a thorough understanding of the adjacent concentration inductive bias. In contrast, the series association method uses self-attention techniques to specifically focus on the original raw data. Furthermore, because anomalies are rare in nature, we utilize normalized data to identify series associations and employ non-normalized data to uncover prior associations. This approach enhances the modelled series associations and, consequently, improves the association discrepancies.

摘要

异常在本质上并不常见,但检测这些异常对于任何系统的正常运行可能至关重要。异常的稀有性可能对其检测构成挑战,因为检测模型需要依赖数据点与其相邻数据点的关系。在这项工作中,我们利用异常的稀有性来检测它们。为此,我们引入了可逆实例归一化异常变换器(RINAT)。基于异常变换器的基本原理,RINAT为每个时间点纳入了先验关联和序列关联。先验关联使用可学习的高斯核,以确保对相邻浓度归纳偏差有透彻的理解。相比之下,序列关联方法使用自注意力技术专门关注原始原始数据。此外,由于异常在本质上很罕见,我们利用归一化数据来识别序列关联,并使用未归一化数据来揭示先验关联。这种方法增强了建模的序列关联,从而改善了关联差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/347b/10675229/441b34a53089/sensors-23-09272-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验