Suppr超能文献

一种基于蒸馏与重构的图像异常检测方法。

A Method for Image Anomaly Detection Based on Distillation and Reconstruction.

作者信息

Luo Jiaxiang, Zhang Jianzhao

机构信息

School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China.

出版信息

Sensors (Basel). 2023 Nov 20;23(22):9281. doi: 10.3390/s23229281.

Abstract

Image anomaly detection is a trending research topic in computer vision. The objective is to build models using available normal samples to detect various abnormal images without depending on real abnormal samples. It has high research significance and value for applications in the detection of defects in product appearance, medical image analysis, hyperspectral image processing, and other fields. This paper proposes an image anomaly detection algorithm based on feature distillation and an autoencoder structure, which uses the feature distillation structure of a dual-teacher network to train the encoder, thus suppressing the reconstruction of abnormal regions. This system also introduces an attention mechanism to highlight the detection objects, achieving effective detection of different defects in product appearance. In addition, this paper proposes a method for anomaly evaluation based on patch similarity that calculates the difference between the reconstructed image and the input image according to different regions of the image, thus improving the sensitivity and accuracy of the anomaly score. This paper conducts experiments on several datasets, and the results show that the proposed algorithm has superior performance in image anomaly detection. It achieves 98.8% average AUC on the SMDC-DET dataset and 98.9% average AUC on the MVTec-AD dataset.

摘要

图像异常检测是计算机视觉领域一个热门的研究课题。其目标是利用可用的正常样本构建模型,以检测各种异常图像,而无需依赖真实的异常样本。它在产品外观缺陷检测、医学图像分析、高光谱图像处理等领域的应用中具有很高的研究意义和价值。本文提出了一种基于特征蒸馏和自动编码器结构的图像异常检测算法,该算法利用双教师网络的特征蒸馏结构来训练编码器,从而抑制异常区域的重建。该系统还引入了注意力机制来突出检测对象,实现对产品外观不同缺陷的有效检测。此外,本文提出了一种基于补丁相似度的异常评估方法,该方法根据图像的不同区域计算重建图像与输入图像之间的差异,从而提高异常分数的灵敏度和准确性。本文在多个数据集上进行了实验,结果表明所提出的算法在图像异常检测中具有优越的性能。在SMDC-DET数据集上平均AUC达到98.8%,在MVTec-AD数据集上平均AUC达到98.9%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688f/10674649/b829d701d8b2/sensors-23-09281-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验