Wen Erda, Yang Xiaozhen, Sievenpiper Daniel F
Department of ECE, University of California San Diego, La Jolla, CA, USA.
Nat Commun. 2023 Nov 25;14(1):7736. doi: 10.1038/s41467-023-43473-y.
Manipulating the electromagnetic (EM) scattering behavior from an arbitrary surface dynamically on arbitrary design goals is an ultimate ambition for many EM stealth and communication problems, yet it is nearly impossible to accomplish with conventional analysis and optimization techniques. Here we present a reconfigurable conformal metasurface prototype as well as a workflow that enables it to respond to multiple design targets on the reflection pattern with extremely low on-site computing power and time. The metasurface is driven by a sequential tandem neural network which is pre-trained using actual experimental data, avoiding any possible errors that may arise from calculation, simulation, or manufacturing tolerances. This platform empowers the surface to operate accurately in a complex environment including varying incident angle and operating frequency, or even with other scatterers present close to the surface. The proposed data-driven approach requires minimum amount of prior knowledge and human effort yet provides maximized versatility on the reflection control, stepping towards the end form of intelligent tunable EM surfaces.
根据任意设计目标动态操纵来自任意表面的电磁(EM)散射行为,是许多电磁隐身和通信问题的最终目标,但用传统的分析和优化技术几乎无法实现。在此,我们展示了一种可重构共形超表面原型以及一种工作流程,使其能够以极低的现场计算能力和时间响应反射模式上的多个设计目标。该超表面由一个顺序串联神经网络驱动,该网络使用实际实验数据进行预训练,避免了计算、模拟或制造公差可能产生的任何误差。该平台使该表面能够在复杂环境中精确运行,包括不同的入射角和工作频率,甚至在靠近表面存在其他散射体的情况下。所提出的数据驱动方法需要最少的先验知识和人力,但在反射控制方面提供了最大的通用性,朝着智能可调谐电磁表面的最终形式迈进。