Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
School of Chemical Sciences, NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Nat Commun. 2023 Nov 25;14(1):7734. doi: 10.1038/s41467-023-43604-5.
The ribosomally synthesized and post-translationally modified peptide (RiPPs) class of natural products has undergone significant expansion due to the rapid growth in genome sequencing data. Using a bioinformatics approach, we identify the dehydrazoles, a novel class of hypermodified RiPPs that contain both side chain dehydration of Ser residues, and backbone heterocyclization at Ser, Thr, and Cys residues to the corresponding azol(in)es. Structure elucidation of the hypermodified peptide carnazolamide, a representative class member, shows that 18 post-translational modifications are installed by just five enzymes. Complete biosynthetic reconstitution demonstrates that dehydration is carried out by an unusual DUF4135 dehydration domain fused to a zinc-independent cyclase domain (CcaM). We demonstrate that CcaM only modifies Ser residues that precede an azole in the core peptide. As heterocyclization removes the carbonyl following the Ser residue, CcaM likely catalyzes dehydration without generating an enolate intermediate. Additionally, CcaM does not require the leader peptide, and this core-dependence effectively sets the order for the biosynthetic reactions. Biophysical studies demonstrate direct binding of azoles to CcaM consistent with this azole moiety-dependent dehydration. Bioinformatic analysis reveals more than 50 related biosynthetic gene clusters that contain additional catalysts that may produce structurally diverse scaffolds.
核糖体合成和翻译后修饰肽(RiPPs)类天然产物由于基因组测序数据的快速增长而经历了显著的扩张。我们采用生物信息学方法鉴定了脱水酶,这是一类新型的高度修饰的 RiPPs,其中包含丝氨酸残基侧链的脱水以及丝氨酸、苏氨酸和半胱氨酸残基的骨架杂环化,形成相应的唑(啉)。高度修饰肽 carnazolamide 的结构阐明表明,仅由五个酶即可安装 18 个翻译后修饰。完整的生物合成重建表明,脱水是由一个不寻常的 DUF4135 脱水结构域与一个锌非依赖性环化酶结构域(CcaM)融合来完成的。我们证明 CcaM 仅修饰核心肽中唑之前的丝氨酸残基。由于杂环化去除了丝氨酸残基后面的羰基,因此 CcaM 可能在没有生成烯醇化物中间物的情况下催化脱水。此外,CcaM 不需要前导肽,而这种核心依赖性有效地确定了生物合成反应的顺序。生物物理研究表明,唑直接与 CcaM 结合,这与唑部分依赖性脱水一致。生物信息学分析揭示了 50 多个相关的生物合成基因簇,其中包含可能产生结构多样支架的其他催化剂。