Suppr超能文献

MSS-UNet:一种基于多空间移位 MLP 的用于皮肤病变分割的 UNet。

MSS-UNet: A Multi-Spatial-Shift MLP-based UNet for skin lesion segmentation.

机构信息

Computer School, University of South China, Hengyang, China.

School of Information Engineering, Xinjiang Institute of Technology, Aksu, China.

出版信息

Comput Biol Med. 2024 Jan;168:107719. doi: 10.1016/j.compbiomed.2023.107719. Epub 2023 Nov 20.

Abstract

Multilayer perceptron (MLP) networks have become a popular alternative to convolutional neural networks and transformers because of fewer parameters. However, existing MLP-based models improve performance by increasing model depth, which adds computational complexity when processing local features of images. To meet this challenge, we propose MSS-UNet, a lightweight convolutional neural network (CNN) and MLP model for the automated segmentation of skin lesions from dermoscopic images. Specifically, MSS-UNet first uses the convolutional module to extract local information, which is essential for precisely segmenting the skin lesion. We propose an efficient double-spatial-shift MLP module, named DSS-MLP, which enhances the vanilla MLP by enabling communication between different spatial locations through double spatial shifts. We also propose a module named MSSEA with multiple spatial shifts of different strides and lighter external attention to enlarge the local receptive field and capture the boundary continuity of skin lesions. We extensively evaluated the MSS-UNet on ISIC 2017, 2018, and PH2 skin lesion datasets. On three datasets, the method achieves IoU metrics of 85.01%±0.65, 83.65%±1.05, and 92.71%±1.03, with a parameter size and computational complexity of 0.33M and 15.98G, respectively, outperforming most state-of-the-art methods.The code is publicly available at https://github.com/AirZWH/MSS-UNet.

摘要

多层感知机(MLP)网络由于参数较少,已成为卷积神经网络和转换器的流行替代品。然而,现有的基于 MLP 的模型通过增加模型深度来提高性能,这在处理图像的局部特征时增加了计算复杂性。为了应对这一挑战,我们提出了 MSS-UNet,这是一种用于自动分割皮肤镜图像中皮肤病变的轻量级卷积神经网络(CNN)和 MLP 模型。具体来说,MSS-UNet 首先使用卷积模块提取局部信息,这对于精确分割皮肤病变至关重要。我们提出了一种高效的双空间移位 MLP 模块,称为 DSS-MLP,它通过双空间移位实现不同空间位置之间的通信,增强了原始 MLP。我们还提出了一个名为 MSSEA 的模块,它具有多个不同步长的空间移位和更轻的外部注意力,以扩大局部感受野并捕捉皮肤病变的边界连续性。我们在 ISIC 2017、2018 和 PH2 皮肤病变数据集上对 MSS-UNet 进行了广泛评估。在三个数据集上,该方法的 IoU 指标分别达到 85.01%±0.65、83.65%±1.05 和 92.71%±1.03,参数大小和计算复杂度分别为 0.33M 和 15.98G,优于大多数最先进的方法。代码可在 https://github.com/AirZWH/MSS-UNet 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验