Kou Gang, Dinçer Hasan, Yüksel Serhat, Deveci Muhammet
School of Business Administration, Faculty of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China.
School of Business, Istanbul Medipol University, Istanbul, Turkey; University of Religions and Denominations, Qom, Iran; Clinic of Economics, Azerbaijan State University of Economics (UNEC), Istiqlaliyyat Str. 6, Baku, AZ1141, Azerbaijan.
J Adv Res. 2024 Dec;66:39-46. doi: 10.1016/j.jare.2023.11.023. Epub 2023 Nov 24.
This study aims to identify optimal digital twin policies for enhancing renewable energy projects. Through a comprehensive analysis, the research evaluates the potential of digital twins in the renewable energy sector while considering triple bottom line perspectives.
The study's main goal is to prioritize digital twin policies that can effectively boost renewable energy projects. The research aims to demonstrate the practical application and reliability of a proposed evaluation model.
Nine criteria, derived from literature review and triple bottom line viewpoints, are selected. Using the decision-making trial and evaluation laboratory (DEMATEL) methodology and Quantum picture fuzzy rough sets, criteria weights are determined. Quantum picture fuzzy technique for order of preference by similarity to ideal solution (TOPSIS) evaluates sustainable industrial internet of things strategies in new-gen energy investments. VIsekriterijumska optimizcija i KOmpromisno Resenje (VIKOR) methodology enables a comparative assessment, and sensitivity analysis is conducted across nine cases.
Consistent outcomes across various methods validate the model's reliability. Ecosystem preservation carries the highest weight (0.1147), followed by resource policy optimization with digital twins (0.1139). Distributed energy resilience ranks first (RCi 0.576), closely followed by energy efficiency optimization (RCi 0.542).
This study underscores ecosystem preservation and efficient resource policies as pivotal for successful digital twin deployment in renewable energy projects. The findings highlight digital twins' potential contribution to environmental protection and ecosystem sustainability, emphasizing resource efficiency through their effective use.
本研究旨在确定用于加强可再生能源项目的最佳数字孪生策略。通过全面分析,该研究在考虑三重底线视角的同时,评估了数字孪生在可再生能源领域的潜力。
该研究的主要目标是对能够有效推动可再生能源项目的数字孪生策略进行优先排序。该研究旨在证明所提出的评估模型的实际应用和可靠性。
从文献综述和三重底线观点中选取了九个标准。使用决策试验与评价实验室(DEMATEL)方法和量子图像模糊粗糙集确定标准权重。用于与理想解相似性优先排序的量子图像模糊技术(TOPSIS)评估新能源投资中的可持续工业物联网策略。多准则优化和妥协解(VIKOR)方法进行了比较评估,并对九个案例进行了敏感性分析。
各种方法得出的一致结果验证了模型的可靠性。生态系统保护权重最高(0.1147),其次是数字孪生资源政策优化(0.1139)。分布式能源弹性排名第一(RCi 0.576),紧随其后的是能源效率优化(RCi 0.542)。
本研究强调生态系统保护和高效资源政策对于可再生能源项目中成功部署数字孪生至关重要。研究结果突出了数字孪生对环境保护和生态系统可持续性的潜在贡献,强调通过有效利用数字孪生提高资源效率。