Suppr超能文献

提高制造企业采用工业物联网的准备程度:一种集成的毕达哥拉斯模糊方法。

Enhancing readiness degree for Industrial Internet of Things adoption in manufacturing enterprises: An integrated Pythagorean fuzzy approach.

作者信息

Sumrit Detcharat

机构信息

The Cluster of Logistics and Rail Engineering, Faculty of Engineering, Mahidol University, Thailand.

出版信息

Heliyon. 2024 Oct 9;10(20):e39007. doi: 10.1016/j.heliyon.2024.e39007. eCollection 2024 Oct 30.

Abstract

This study proposes a hybrid multi-criteria decision-making (MCDM) methodology designed to enhance the readiness for adopting the Industrial Internet of Things (IIoT) in manufacturing enterprises. The Pythagorean fuzzy approach is employed to address uncertainty and imprecision throughout decision-making processes. The development framework in this study incorporates TOE (Technology-Organization-Environment) and HOT fit (Human-Organization-Technology) to pinpoint barriers to IIoT adoption. Additionally, a triple helix model (THM) emphasizing on the synergy among university-industry-government is utilized to formulate pragmatic strategies. The agro-food processing industry in Thailand is used as a case study. In this study, even barriers are identified and validated through the Delphi method. The SWARA (Step-wise Weight Assessment Ratio Analysis) method determines the importance weights of these barriers, revealing "lack of digital culture", "lack of knowledge and expertise," and "job displacement concerns" as the three most critical barriers. The COBRA (COmprehensive Distance Based Ranking) method is employed to prioritize pragmatic strategies under THM, indicating that the role of the university in enhancing human capital capabilities is the most important, followed by the government's roles in enabling national ICT infrastructures and offering investment incentives as the second and third pragmatic strategies, respectively. A sensitivity analysis validates the proposed framework's reliability and robustness. The study's findings emphasize the potential of this integrated framework to guide future research endeavors among scholars and academicians across diverse industries beyond agri-food processing.

摘要

本研究提出了一种混合多标准决策(MCDM)方法,旨在提高制造企业采用工业物联网(IIoT)的准备程度。采用毕达哥拉斯模糊方法来解决整个决策过程中的不确定性和不精确性。本研究中的发展框架纳入了TOE(技术-组织-环境)和HOT适配(人-组织-技术),以找出采用工业物联网的障碍。此外,还利用强调大学-产业-政府之间协同作用的三螺旋模型(THM)来制定务实的策略。以泰国的农产品加工业为例进行研究。在本研究中,通过德尔菲法识别并验证了障碍因素。SWARA(逐步权重评估比率分析)方法确定了这些障碍的重要权重,揭示了“缺乏数字文化”、“缺乏知识和专业技能”以及“对工作岗位替代的担忧”是三个最关键的障碍。采用COBRA(基于综合距离的排序)方法对三螺旋模型下的务实策略进行排序,表明大学在提升人力资本能力方面的作用最为重要,其次是政府在建设国家信息通信技术基础设施和提供投资激励方面的作用,分别列为第二和第三务实策略。敏感性分析验证了所提出框架的可靠性和稳健性。研究结果强调了这一综合框架在指导农业食品加工行业以外的不同行业的学者和院士未来研究工作方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6ec/11620049/3d894ee5ccbd/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验