Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India.
Methods. 2024 Jan;221:27-34. doi: 10.1016/j.ymeth.2023.11.009. Epub 2023 Nov 24.
At this "Aluminum Age", exposure to aluminum (metallic or ionic form) is inevitable and inestimable. The presence of aluminum in biological systems is evident but more often aluminum toxicity is less understood. Therefore, the presence of biologically reactive aluminum needs to be identified and quantified. Alongside metals, L-cysteine, an essential amino acid, plays a pivotal role in the homeostasis of cellular oxidative and reductive stress. However, excess (<7g) could be lethal and can lead to death. Thus, in-situ selective detection of aluminum and L-cysteine is of larger interest. Here we report a fluorogenic probe (R) for the sequential selective detection and quantification of Al and L-cysteine in a semi-aqueous medium (3:7; water: DMSO). The probe (R) was synthesized by a one-step acid-mediated condensation reaction between pyridine-3,4-diamine and 2-hydroxy-1-napthaldehyde. The synthesized probe was characterized using H and C NMR, and HR-Mass spectroscopic techniques. The probe (R) is non-emissive in nature, but on recognition of Al, the probe R showed "turn-on" emission (bright yellow colour) showing two emission maxima (522 nm and 547 nm), and no naked eye observable color change. Other competing cations do not show any noticeable fluorescence outcome. The R + Al ensemble can specifically detect L-cysteine among all the essential amino acids by showing a fluorescence "turn-off" response. The sensing mechanism of Al is obeying the chelation-enhanced fluorescence (CHEF) effect. The binding constant of R + Al is 0.3 × 10 M. The limit of detection (LoD) for Al and L-cysteine are 2.02 × 10 M and 0.5 × 10 M respectively. The probe (R) can show maximum efficiency within the pH range (7.0-10.0). The probe is found non-toxic (>80 % cell viability with 15 µM concentration) and employed for the in-vitro fluorescence imaging in the HeLa cell.
在这个“铝时代”,人们不可避免地会接触到铝(金属或离子形式),而且这种接触的程度难以估量。铝在生物系统中的存在是显而易见的,但人们对铝毒性的了解却较少。因此,需要识别和量化具有生物反应活性的铝。与金属一样,半胱氨酸作为一种必需氨基酸,在细胞氧化还原应激的动态平衡中也起着关键作用。然而,过量(<7g)可能是致命的,并可能导致死亡。因此,对铝和半胱氨酸的原位选择性检测具有更大的意义。在这里,我们报道了一种用于在半水介质(3:7;水:DMSO)中顺序选择性检测和定量检测 Al 和 L-半胱氨酸的荧光探针(R)。探针(R)通过吡啶-3,4-二胺和 2-羟基-1-萘醛之间的一步酸介导缩合反应合成。通过 H 和 C NMR 以及高分辨率质谱技术对合成的探针进行了表征。该探针本身无荧光,但在识别 Al 后,探针 R 表现出“开启”荧光(亮黄色),显示出两个发射最大值(522nm 和 547nm),且肉眼不可见的颜色变化。其他竞争阳离子没有显示出任何明显的荧光结果。R+Al 配合物可以通过显示荧光“关闭”响应,在所有必需氨基酸中特异性检测 L-半胱氨酸。Al 的传感机制遵循螯合增强荧光(CHEF)效应。R+Al 的结合常数为 0.3×10 M。Al 和 L-半胱氨酸的检测限(LoD)分别为 2.02×10 M 和 0.5×10 M。探针(R)在 pH 值范围(7.0-10.0)内可以显示出最大效率。该探针被发现无毒性(在 15µM 浓度下,细胞存活率超过 80%),并用于 HeLa 细胞的体外荧光成像。