Suppr超能文献

一种用于识别层次相互作用的通用框架及其在基因组学数据中的应用。

A General Framework for Identifying Hierarchical Interactions and Its Application to Genomics Data.

作者信息

Xiao Zhang, Xingjie Shi, Yiming Liu, Xu Liu, Ma Shuangge

机构信息

KLATASDS-MOE, Academy of Statistics and Interdisciplinary Sciences, East China Normal University, China.

School of Statistics and Management, Shanghai University of Finance and Economics, China.

出版信息

J Comput Graph Stat. 2023;32(3):873-883. doi: 10.1080/10618600.2022.2152034. Epub 2023 Feb 6.

Abstract

The analysis of hierarchical interactions has long been a challenging problem due to the large number of candidate main effects and interaction effects, and the need for accommodating the "main effects, interactions" hierarchy. The two-stage analysis methods enjoy simplicity and low computational cost, but contradict the fact that the outcome of interest is attributable to the joint effects of multiple main factors and their interactions. The existing joint analysis methods can accurately describe the underlying data generating process, but suffer from prohibitively high computational cost. And it is not straightforward to extend their optimization algorithms to general loss functions. To address this need, we develop a new computational method that is much faster than the existing joint analysis methods and rivals the runtimes of two-stage analysis. The proposed method, HierFabs, adopts the framework of the forward and backward stagewise algorithm and enjoys computational efficiency and broad applicability. To accommodate hierarchy without imposing additional constraints, it has newly developed forward and backward steps. It naturally accommodates the strong and weak hierarchy, and makes optimization much simpler and faster than in the existing studies. Optimality of HierFabs sequences is investigated theoretically. Simulations show that it outperforms the existing methods. The analysis of TCGA data on melanoma demonstrates its competitive practical performance.

摘要

长期以来,由于存在大量候选主效应和交互效应,以及需要适应“主效应、交互效应”层次结构,层次交互分析一直是一个具有挑战性的问题。两阶段分析方法具有简单性和低计算成本,但与感兴趣的结果归因于多个主要因素及其交互的联合效应这一事实相矛盾。现有的联合分析方法可以准确描述潜在的数据生成过程,但计算成本高得令人望而却步。而且将其优化算法扩展到一般损失函数并非易事。为满足这一需求,我们开发了一种新的计算方法,它比现有的联合分析方法快得多,并且运行时间可与两阶段分析相媲美。所提出的方法HierFabs采用了前向和后向逐步算法的框架,具有计算效率和广泛的适用性。为了在不施加额外约束的情况下适应层次结构,它新开发了前向和后向步骤。它自然地适应了强层次结构和弱层次结构,并且使优化比现有研究更简单、更快。从理论上研究了HierFabs序列的最优性。模拟表明它优于现有方法。对黑色素瘤的TCGA数据分析证明了其具有竞争力的实际性能。

相似文献

6
Stagewise generalized estimating equations with grouped variables.具有分组变量的逐阶段广义估计方程
Biometrics. 2017 Dec;73(4):1332-1342. doi: 10.1111/biom.12669. Epub 2017 Feb 13.

本文引用的文献

2
A brief history of human disease genetics.人类疾病遗传学简史。
Nature. 2020 Jan;577(7789):179-189. doi: 10.1038/s41586-019-1879-7. Epub 2020 Jan 8.
10
Convex Modeling of Interactions with Strong Heredity.具有强遗传性的相互作用的凸模型
J Comput Graph Stat. 2016;25(4):981-1004. doi: 10.1080/10618600.2015.1067217. Epub 2015 Aug 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验